On applications of the retracing method for distance-regular graph
Page views
260Petsa
2006May-akda
Tagapayo ng Tesis
Tagapangulo ng Panel ng Depensa
Magbahagi
Metadata
Ipakita ang buong tala ng item
Abstract
This thesis is an exposition of the article written by Akira Hiraki entitled Applications of Retracing Method for Distance-Regular Graphs published in European Journal of Combinatorics, April 2004. The main results of the article are as follows:
\(\mathbf{Theorem \,1.1} \, \mathrm{Let}\, \Gamma \,\mathrm{be\,a\,distance-regular\,graph \,of \,diameter} \,d \,\mathrm{with}\)
\[r = |\{ i|(c_{i}, a_{i}, b_{i}) = (c_{1}, a_{1}, b_{1})\}| \geq 2\]
\(\mathrm{and} \, c_{r+1} \geq 2. \, \mathrm{Let} \, m, s \, \mathrm{and} \, t \, \mathrm{be\,positive\,integers\,with\,} s \leq \, m, m + t \leq d \, \mathrm{and} \, (s, t)\)
\( \neq (1,1). \mathrm{Suppose} \, b_{m-s+1} = \cdots = b_{m} = 1 + b_{m+1}, c_{m+1} = \cdots = c_{m+t} = 1 + c_{m}\)
\(\mathrm{and} \, a_{m-s+2} = \cdots = a_{m+t-1} = 0. \, \mathrm{Then\,the\,following\,hold.}\)
\[\mathrm{If}\,b_{m+1} ≥ 2,\,\mathrm{then} \,t ≤ r – 2 \lfloor\,s/3\,\rfloor. \tag{1}\] \[\mathrm{If} \,c_{m} ≥ 2, \mathrm{then} \,s ≤ r – 2 \lfloor\,t/3\,\rfloor. \tag{2}\]
\(\mathbf{Corollary \,1.2} \, \mathrm{Under\,the\,assumption\,of\,Theorem\,1.1,\,the\,following\,hold.}\)
\[\mathrm{If} \, r = t \, \mathrm{and} \, b_{m+1} \geq 2, \, \mathrm{then} \, s \leq 2. \tag{1}\]
\[\mathrm{If} \, r = s \, \mathrm{and} \, c_{m} \geq 2, \, \mathrm{then} \, t \leq 2. \tag{2}\]
\(\mathbf{Corollary \,1.3.} \, \mathrm{Let} \, \Gamma \, \mathrm{be\,a\,distance-regular\,graph\,of\,valency} \, k \geq \, 3 \, \mathrm{with}\)
\( c_{1} = \cdots = c_{r} = 1, c_{r+1} = \cdots = c_{r+t} = 2 \, \mathrm{and} \, a_{1} = \cdots = a_{r+t-1} = 0.\)
\[\mathrm{If} \, k \geq 4, \, \mathrm{then} \, t \leq r-2 \lfloor\,r/3\rfloor. \tag{1}\]
\[\mathrm{If} \, 2 \leq t = r, \, \mathrm{then} \, \Gamma \, \mathrm{is \, either \, the \, Odd \, graph, \, or \, the \, doubled \, Odd \, graph.}\tag{2}\]
\[\mathrm{If} \, 2 \leq t = r – 1, \, \mathrm{then} \, \Gamma \, \mathrm{is \, the \, Foster \, graph.} \tag{3}\]
Paglalarawan
Abstract only
Mungkahing Sipi
Vencer, N. L. C. (2006). On applications of the retracing method for distance-regular graph (Unpublished Master’s thesis). De La Salle University, Manila.
Uri
ThesisMga Paksa
Kagawaran
Mathematics Department, College of ScienceDegree
Master of Science in MathematicsLokasyon ng Istante
GSL Theses 510.72 V552
Pisikal na paglalarawan
vi, 76 leaves
Collections
- Theses [18]