On applications of the retracing method for distance-regular graph
摘要
This thesis is an exposition of the article written by Akira Hiraki entitled Applications of Retracing Method for Distance-Regular Graphs published in European Journal of Combinatorics, April 2004. The main results of the article are as follows:
\(\mathbf{Theorem \,1.1} \, \mathrm{Let}\, \Gamma \,\mathrm{be\,a\,distance-regular\,graph \,of \,diameter} \,d \,\mathrm{with}\)
\[r = |\{ i|(c_{i}, a_{i}, b_{i}) = (c_{1}, a_{1}, b_{1})\}| \geq 2\]
\(\mathrm{and} \, c_{r+1} \geq 2. \, \mathrm{Let} \, m, s \, \mathrm{and} \, t \, \mathrm{be\,positive\,integers\,with\,} s \leq \, m, m + t \leq d \, \mathrm{and} \, (s, t)\)
\( \neq (1,1). \mathrm{Suppose} \, b_{m-s+1} = \cdots = b_{m} = 1 + b_{m+1}, c_{m+1} = \cdots = c_{m+t} = 1 + c_{m}\)
\(\mathrm{and} \, a_{m-s+2} = \cdots = a_{m+t-1} = 0. \, \mathrm{Then\,the\,following\,hold.}\)
\[\mathrm{If}\,b_{m+1} ≥ 2,\,\mathrm{then} \,t ≤ r – 2 \lfloor\,s/3\,\rfloor. \tag{1}\] \[\mathrm{If} \,c_{m} ≥ 2, \mathrm{then} \,s ≤ r – 2 \lfloor\,t/3\,\rfloor. \tag{2}\]
\(\mathbf{Corollary \,1.2} \, \mathrm{Under\,the\,assumption\,of\,Theorem\,1.1,\,the\,following\,hold.}\)
\[\mathrm{If} \, r = t \, \mathrm{and} \, b_{m+1} \geq 2, \, \mathrm{then} \, s \leq 2. \tag{1}\]
\[\mathrm{If} \, r = s \, \mathrm{and} \, c_{m} \geq 2, \, \mathrm{then} \, t \leq 2. \tag{2}\]
\(\mathbf{Corollary \,1.3.} \, \mathrm{Let} \, \Gamma \, \mathrm{be\,a\,distance-regular\,graph\,of\,valency} \, k \geq \, 3 \, \mathrm{with}\)
\( c_{1} = \cdots = c_{r} = 1, c_{r+1} = \cdots = c_{r+t} = 2 \, \mathrm{and} \, a_{1} = \cdots = a_{r+t-1} = 0.\)
\[\mathrm{If} \, k \geq 4, \, \mathrm{then} \, t \leq r-2 \lfloor\,r/3\rfloor. \tag{1}\]
\[\mathrm{If} \, 2 \leq t = r, \, \mathrm{then} \, \Gamma \, \mathrm{is \, either \, the \, Odd \, graph, \, or \, the \, doubled \, Odd \, graph.}\tag{2}\]
\[\mathrm{If} \, 2 \leq t = r – 1, \, \mathrm{then} \, \Gamma \, \mathrm{is \, the \, Foster \, graph.} \tag{3}\]
描述
Abstract only
建议引文
Vencer, N. L. C. (2006). On applications of the retracing method for distance-regular graph (Unpublished Master’s thesis). De La Salle University, Manila.
文件类型
Thesis部
Mathematics Department, College of Science学位
Master of Science in Mathematics货架位置
GSL Theses 510.72 V552
物理描述
vi, 76 leaves
集合
- Theses [18]