On applications of the retracing method for distance-regular graph
Page views
244Date
2006Author
Thesis Adviser
Defense Panel Chair
Share
Metadata
Show full item record
Abstract
This thesis is an exposition of the article written by Akira Hiraki entitled Applications of Retracing Method for Distance-Regular Graphs published in European Journal of Combinatorics, April 2004. The main results of the article are as follows:
\(\mathbf{Theorem \,1.1} \, \mathrm{Let}\, \Gamma \,\mathrm{be\,a\,distance-regular\,graph \,of \,diameter} \,d \,\mathrm{with}\)
\[r = |\{ i|(c_{i}, a_{i}, b_{i}) = (c_{1}, a_{1}, b_{1})\}| \geq 2\]
\(\mathrm{and} \, c_{r+1} \geq 2. \, \mathrm{Let} \, m, s \, \mathrm{and} \, t \, \mathrm{be\,positive\,integers\,with\,} s \leq \, m, m + t \leq d \, \mathrm{and} \, (s, t)\)
\( \neq (1,1). \mathrm{Suppose} \, b_{m-s+1} = \cdots = b_{m} = 1 + b_{m+1}, c_{m+1} = \cdots = c_{m+t} = 1 + c_{m}\)
\(\mathrm{and} \, a_{m-s+2} = \cdots = a_{m+t-1} = 0. \, \mathrm{Then\,the\,following\,hold.}\)
\[\mathrm{If}\,b_{m+1} ≥ 2,\,\mathrm{then} \,t ≤ r – 2 \lfloor\,s/3\,\rfloor. \tag{1}\] \[\mathrm{If} \,c_{m} ≥ 2, \mathrm{then} \,s ≤ r – 2 \lfloor\,t/3\,\rfloor. \tag{2}\]
\(\mathbf{Corollary \,1.2} \, \mathrm{Under\,the\,assumption\,of\,Theorem\,1.1,\,the\,following\,hold.}\)
\[\mathrm{If} \, r = t \, \mathrm{and} \, b_{m+1} \geq 2, \, \mathrm{then} \, s \leq 2. \tag{1}\]
\[\mathrm{If} \, r = s \, \mathrm{and} \, c_{m} \geq 2, \, \mathrm{then} \, t \leq 2. \tag{2}\]
\(\mathbf{Corollary \,1.3.} \, \mathrm{Let} \, \Gamma \, \mathrm{be\,a\,distance-regular\,graph\,of\,valency} \, k \geq \, 3 \, \mathrm{with}\)
\( c_{1} = \cdots = c_{r} = 1, c_{r+1} = \cdots = c_{r+t} = 2 \, \mathrm{and} \, a_{1} = \cdots = a_{r+t-1} = 0.\)
\[\mathrm{If} \, k \geq 4, \, \mathrm{then} \, t \leq r-2 \lfloor\,r/3\rfloor. \tag{1}\]
\[\mathrm{If} \, 2 \leq t = r, \, \mathrm{then} \, \Gamma \, \mathrm{is \, either \, the \, Odd \, graph, \, or \, the \, doubled \, Odd \, graph.}\tag{2}\]
\[\mathrm{If} \, 2 \leq t = r – 1, \, \mathrm{then} \, \Gamma \, \mathrm{is \, the \, Foster \, graph.} \tag{3}\]
Description
Abstract only
Suggested Citation
Vencer, N. L. C. (2006). On applications of the retracing method for distance-regular graph (Unpublished Master’s thesis). De La Salle University, Manila.
Type
ThesisSubject(s)
Department
Mathematics Department, College of ScienceDegree
Master of Science in MathematicsShelf Location
GSL Theses 510.72 V552
Physical Description
vi, 76 leaves
Collections
- Theses [18]