AGRICULTURAL ENGINEERING DESIGN DATA HANDBOOK

Alexis T. Belonio

Department of Agricultural Engineering and Environmental Management College of Agriculture Central Philippine University Iloilo City, Philippines 2006

About the Author

Alexis T. Belonio is a Professional Agricultural Engineer. Presently, he is an Associate Professor and Chairman of the Department of Agricultural Engineering and Environmental Management, College of Agriculture, Central Philippine University, Iloilo City. He finished his Bachelor of Science in Agricultural Engineering and Master of Science degrees from Central Luzon State University, Muñoz, Nueva Ecija. He has involved teaching, been deeply in research. project development. entrepreneurial various and activity on agricultural engineering projects since 1983.

He was awarded by the Philippine Society of Agricultural Engineers (PSAE) as Most Outstanding Agricultural Engineer in the Field of Farm Power and Machinery and by the Professional Regulation Commission (PRC) as Outstanding Professional in the Field of Agricultural Engineering in 1993. In 1997, he was awarded by the TOYM Foundation and the Jerry Roxas Foundation as the Outstanding Young Filipinos (TOYF) in the Field of Agricultural Engineering. He is presently a PSAE Fellow Member.

As a dedicated professional, he serves as technical consultant to various agricultural machinery manufacturers in Region VI. He also serves as a Reviewer of the TGIM Foundation Review Center on the field of Agricultural Machinery and Allied Subjects, and Agricultural Processing and Allied Subjects since 1998. He has written and published several research and technical papers.

Other Books Available

Dictionary of Agricultural Engineering Agricultural Engineering Formula Problems and Solutions in Agricultural Engineering Agricultural Engineering Reviewer Volume I Agricultural Engineering Reviewer Volume II Rice Husk Gas Stove Handbook

AGRICULTURAL ENGINEERING DESIGN DATA HANDBOOK

Alexis T. Belonio

Department of Agricultural Engineering and Environmental Management College of Agriculture Central Philippine University Iloilo City, Philippines

2006

The Author:

Alexis T. Belonio is a Professional Agricultural Engineer. Presently, he is an Associate Professor and Chairman of the Department of Agricultural Engineering and Environmental Management, College of Agriculture, Central Philippine University, Iloilo City. He finished his Bachelor of Science in Agricultural Engineering and Master of Science degrees from Central Luzon State University, Muñoz, Nueva Ecija. He has been deeply involved in teaching, research, project development, and entrepreneurial activity on various agricultural engineering projects since 1983.

He was awarded by the Philippine Society of Agricultural Engineers (PSAE) as Most Outstanding Agricultural Engineer in the field of Farm Power and Machinery and by the Professional Regulation Commission (PRC) as Outstanding Professional in the Field of Agricultural Engineering in 1993. In 1997, he was awarded by the TOYM Foundation and the Jerry Roxas Foundation as The Outstanding Young Filipinos (TOYF) in the field of Agricultural Engineering. He is presently a PSAE Fellow Member.

As a dedicated professional, he serves as technical consultant to various agricultural machinery manufacturers in Region VI. He also serves as a Reviewer of the TGIM Foundation Review Center on the field of Agricultural Machinery and Allied Subjects, and Agricultural Processing and Allied Subjects since 1998. He has written and published several research and technical papers.

Acknowledgement:

The author is very much thankful to the Lord God Almighty who inspired him to prepare this material for the benefit of those who are called to serve in the agricultural engineering profession.

He is also thankful to Jane in typing this manuscript and to Cyrus in his invaluable suggestions during printing of this booklet.

To Salve and their children: Mike, Happy, Humble, Jireh, Justly, Tenderly, and Wisdom for their prayer and encouragement.

Trial Edition

Copyright © 2006 by Alexis T. Belonio

No part of this book is allowed to be photocopied or reproduced in any form without any written permission from the author.

PREFACE

This book is a compilation of the various data and charts commonly used in agricultural engineering courses. Students who are taking the course as well as those who are preparing for the Professional Agricultural Engineer Board Examination may find this book useful. Practicing Agricultural Engineers and those other Engineers working in the field of agriculture will find this book a handy reference for the data needed in the design of agricultural machines, power and energy sources, processing and handling of agricultural and food products, farm structures and electrification, irrigation and soil conservation, and other relevant information in the field of agricultural engineering.

Data were obtained from several sources which includes textbook, journals, technical magazines, codes and standards. Data and figures are presented in topical form for ease finding the information needed.

This book is in draft form yet additional data relevant to the need will be included in the future to make this material more comprehensive. Comments and suggestions are welcome for future improvement of this book.

God bless and may this book become useful to you!

ALEXIS T. BELONIO

TABLE OF CONTENT

Title	Page
Agricultural Crops	1
Agricultural and Food Products	6
Agricultural Equipment Operation	8
Agricultural Structures	13
Animal Power	25
Bearing	26
Biogas	27
Biomass Energy	32
Charcoal	45
Chemical Formula	47
Climate	50
Concrete	51
Conveyor	53
Cookstove	68
Corn Mill	70
Crops	71
Dairy Products	78
Dryer	80
Dynamometers	97
Electric Motor	98
Electrification	100
Energy	106
Engine	107
Fan	115
Farm Equipment	119
Feed Mill	127
Fish	133
Fluid	135
Fruits and Vegetables	136
Fuel	147
Furnace	153
Gasification	153
Gears	155
Grains	157
Grains and Seeds	158

Grains and Cereals	159
Heat Transfer	160
Grains and Seeds	158
Grains and Cereals	159
Heat Transfer	160
Human Body	169
Hydro Power	170
Incubator	171
Implement	172
Irrigation	179
Meat	186
Paddy	188
Plowing	189
Power	190
Power Tiller	191
Power Transmission	192
Psychrometric Chart	203
Pumps	206
Refrigeration	215
Rice	220
Rice Dryer	221
Rice Hull	221
Rice Mill	223
Rice Thresher	229
Seeder	231
Seeder Planter	233
Seeds	235
Seeds and Grains	236
Seeds and Oil	237
Soil	238
Solid Municipal Waste	242
Solid	243
Solar Energy	244
Solar Radiation	245
Sprayer	248

Storage	250
Substances	252
Sunflower Oil Blend With Diesel Fuel	254
Tools	255
Tractor	256
Vegetables	262
Warehouse	263
Wind Energy	264
Wood	270

Coefficient of Friction					
Crop	Steel	Smooth Concrete	Smooth Wood	Rough Wood	
Barley	0.38	0.45	0.32		
Corn					
Ear	-	-	0.62	-	
Shelled	0.37	0.42	0.31	0.32	
Flaxseed	0.34	0.41	0.31	-	
Oats	0.41	0.47	0.37		
Peas	0.26	0.30	0.27		
Rice, rough	0.41	0.52	0.44	0.52	
Rye	0.41	0.35	0.33		
Sorghum	0.37	0.33	0.30	-	
Soybean	0.36	0.44	0.32	0.30	
Sugar beat	-	0.52	0.82	0.70	
Tares	0.36	0.36	0.39	-	
Vetch	0.33	0.24	0.26	-	
Wheat	0.40	0.42	0.46	0.35	

AGRICULTURAL CROPS Coefficient of Friction

AGRICULTURAL CROPS Composition of Copra at Various Level of Moisture

	% Composition					
	Oil Meal Water					
Wet Copra	55.3	24.7	20.0			
Undried Copra	60.9	27.1	12.0			
Dry Copra	65.0	29.0	6.0			
Copra (Moisture Free	69.1	30.9	0.0			

AGRICULTURAL CROPS Period of Maturity of Some Rice Varieties

Variety	Flowering	Maturity
	(days)	(days)
IR 5	103	132
IR 8	96	127
IR 20	88	118
IR 24	93	122
IR 26	96	127
IR 28	75	102
IR 32	100	132
IR 36	80	114
IR 40	85	114
IR 42	102	132
IR 50	78	109
IR 54	90	122
IR 58	73	102
IR 60	80	107
IR 64	84	117

AGRICULTURAL CROPS Production Yield of Various Crops

Сгор	Yield (tons per hectare)
Banana	39
Cassava	71
Maize	20
Sweet Potato	65
Rice	26
Sorghum	16 - 18
Wheat	12

Crops	Main	By-Product	Ratio of Main Product to By-Product
-	Product		-
Cereal			
Wheat	Grain	Straw	1:1.3
Barley	Grain	Straw	1: 1.2
Maize	Grain	Straw	1:1
Oats	Grain	Straw	1:1.3
Rye	Grain	Straw	1:1.6
Rice	Grain	Straw	1:1.4
Millet	Grain	Straw	1:1.4
Sorghum	Grain	Straw	1:1.4
Pulse			
Pea	Grain		1:1.5
Bean	Grain		1:2.1
Soya	Grain		1:2.1
Tuber and root		Stalk	
crops			
Potatoes	Tuber	Stalk	1:0.4
Feedbeet	Root	Stalk	1:0.3
Sugarbeet	Root		
Cocoa	Nut	Shell and outer	1:0.2
		fiber	
Sugar Cane	Sugar	Bagasse	1:1.16

AGRICULTURAL CROPS Main Product and By-Product Compositions

AGRICULTURAL CROPS							
Processing Residue Compositions							
Composition	Sugar Cane Bagasse (Dry)	Straws, Rice (Dry)	Straws, Wheat, Im-perial (Dry)	Straws/H usks Rice Hulls (Dry)	Al-mond Hulls (Dry)	Olive Pits (Dry)	
Ash (%)	2.44	18.67	9.55	20.226	6.13	1.72	
HHV (MJ/kg)	18.85	18.85	16.78	15.81	18.84	21.54	
Chlorine (%)	0.03	0.58	2.06	0.12	0.02	0.04	
Water-soluble Alkalis (%)							
Na ₂ O				0.022			
K ₂ O				0.665			
CaO				0.008			
Elemental Composition							
SiO ₂	46.61	7467	37.06	91.442	9.28	30.82	
Al_2O_3	17.69	1.04	2.23	0.78	2.09	8.84	
TiO ₂	2.63	0.09	0.17	0.02	0.05	0.34	
Fe_2O_3	14.14	0.85	0.84	0.14	0.76	6.58	
CaO	4.47	3.01	4.91	3.21	8.07	14.66	
MgO	3.33	1.75	2.55	< 0.01	3.31	4.24	
Na ₂ O	0.79	0.96	9.74	0.21	0.87	27.8	
K ₂ O	4.15	12.3	21.7	0.72	52.9	4.4	
SO ₃	2.08	1.24	4.44	0.43	0.34	0.56	
5.0							

2.04

14.32

100

9.63

100.64

2.72

5.1

20.12

-2.89

100

9.42

2.46

-0.7

100

1.39

 P_2O_5

CO₂/other

Total

Undetermined

Alkali ((kg/GJ)

2.72

1.39

100

0.35

1.41

2.68

100

7.08

AGRICULTUAL CROPS Oil Content, Melting Point, and Oil composition of Selected Oilseeds

Oilseed	Oil Content	Melting	Specific Sample Composition (%)		
	(%)	Point	Saturated	Mono-	Poly-
		(C)		unsaturated	unsaturated
Copra	65-68	23 to 26	91	7	2
Palm kernel	44-53	24 to 26	85	13	2
Sunflower	25-48	-16 to -18	17	29	52
seed					
Ground nut	45-55	-2	17	61	22
Rapeseed	36-50	-9	6	86	8
Cotton seed	15-24	-20	34	26	40
Sesame seed	44-54	-2 to 2	15	40	45
Soya bean		-23 to -20	15	25	60
Oil palm		33 to 40	53	38	9

AGRICULTURAL CROPS Typical Composition of Selected Oil Cakes

	Dry Matter	Crude	Crude	Ash	Ether	Nitrogen
	(%)	Protein	Fiber	(%)	Extract	(0/)
		(%)	(%)		(%)	(%)
Copra	90.1	21	10	5	15	49
Palm kernel	89.0	19	13	4	15	49
Sunflower seed w/ hull	91.3	24	34	5	15	22
Groundnuts seed w/ hull	92.4	32	24	6	15	23
Groundnuts seeds w/o	92.6	46	5	5	15	30
hull						
Rapeseed	87.6	35	10	9	15	31
Cotton seed w/ hull	89.6	23	22	6	15	34
Sesame seed	89.5	40	7	13	15	25
Soya with hull	87.9	42	6	6	15	31

AGRICULTURAL AND FOOD PRODUCTS Storage Data

Product	Storage Tempera-ture	Relative Humidity	Storage life
	(°C)	(%)	
Beer	+5 to +15	80 to 90	2 to 6 months
Blood, whole	+2 to +4		4 to 8 days
Bread, frozen	-15 to -25	90 to 95	4 to 6 months
Cider	+5 to +15	80 to 90	2 to 4 months
Furs	+2 to +4	60 to 70	6 months
Honey	+1 to +10		1 year
Hops	-1.5 to 0	50 to 60	1 to 4 months
Ice	+1 to +2	70 to 80	9 to 12 months
Nuts	+2 to +5	80 to 85	1 to 5 months
Rice	+3 to +6	60 to 70	4 to 6 months
Seeds, frozen	-18 to -20	60 to 70	1 to 4 years
Seeds	+2 to +4	60 to 70	4 to 10 weeks
Skins	+2 to +4	65 to 75	4 to 6 months
Tobacco	+2 to +4	70 to 80	4 to 6 months
Water			
Yeast	0 to +2	70 to 80	1 to 3 weeks

AGRICUTURAL AND FOOD PRODUCTS
Thermal Properties

Product	Freezing Tempe-	Specific Heat	Specific Heat	Latent Heat
	rature	Above Freezing	Below Freezing	(kJ/kg)
	(°C)	(kJ/kg -°C)	(kJ/kg- °C)	
Beer		3.6	1.8	287
Blood, whole				
Bread, frozen		2.93	1.42	115
Cider	-1	3.65	1.85	290
Furs				
Honey		2.1	1.7	60
Hops				
Ice		1.34	1.05	51
Nuts	-5	1.8	0.9	15
Rice	-2	0.9	0.5	15
Seeds, frozen				
Seeds				
Skins				
Tobacco				
Water	0	4.19	2.1	334
Yeast	-4	3.45	1.7	240

Rates of Work	Person-h/ha
Manual Tillage	
Slash and burn	240 - 360
Tillage with hoe	100 - 300
Hoeing, flooded soil	100 - 200
Spade, 25 cm depth	500
Animal Tillage	
2 oxen with redging plow	10
2 oxen with ard	30
4 horses with 2-bottom 14" moldboard	5.0
6 horses with 2-bottom 14" moldboard	4.8
12 horses with 3-bottom 16" moldboard	2.7
6 horses with 8-ft tandem disk harrow	1.8
4 horses with 12-ft spike-tooth harrow	0.8
8 horses with 12-ft spring-tooth harrow	1.2
Water buffalo plowing flooded soil	30 - 60
Water buffalo comb harrowing	40 - 60
5 water buffalo trampling (puddling) wet soil	32 - 40
2 bullocks with plank leveller	15

Rates of Work	Person-h/ha
Tractor Tillage	
4.5-hp pedestrian tiller	4.2
4.5-hp tractor and 4-bottom disk plow	1.3
80-hp tracklayer and 7-bottom disk plow	0.7
5-hp power tiller plowing wet soil	20 - 40
10-hp double-axle pedestrian tractor tilling wet soil	6 - 8
10-hp hydrotiller	4.4
12.5-hp compact tractor plowing wheat stubble	11 - 14
40-hp tractor rotovating wet soil	2.1
5-hp single-axle pedestrian tractor with puddling wheels and comb harrow	20
Clearing virgin forest with tracklayer	69.2
Clearing secondary forest with tracklayer	44.5
Clearing bush with tracklayer	12.3
Manual Planting	
Broadcasting	3.3
Using dibble stick	160

Rates of Work	Person-h/ha		
Seeding in premarked rows and covering by foot	80		
Push- or pull-type planter in dry soil	20		
IRRI row seeder with pregerminated rice			
seed sown in wet soil	5 - 7		
Animal Planting			
Bullock-drawn seed drill	5.3		
2 bullocks and broadcasting and covering	21		
seed 4 horses and 8-ft disk drill	1.4		
6 horses and 12-ft disk drill	0.9		
	1.8		
2 horses and 2-row maize planter	4.3		
2 horses and 1-row potato planter	4.5		
Tractor Planting	0.2.06		
Airplane broadcasting of rice	0.3 - 0.6		
5-hp pedestrian seeder (rice)	8		
60-hp tractor and 4-row maize planter	0.7		
Manual Weed and Pest Control			
Hand weeding transplanted rice	120 - 320		
Hand weeding rice in broadcast field	1150		
Hand weeding rice in dibbled field	380		
Hand weeding rice in drilled field	321		
Rotary push-type weeder in rice	30 - 150		
Hand-carried IRRI power weeder	17		
Knapsack sprayer	13 - 50		
Dusting	7 - 16		

Rates of Work	Person-h/ha
Animal Weed and Pest Control	
2 horses and 2-row (maize) shovel	2.4
Cultivator	
Tractor Weed and Pest Control	
35-hp tractor with cultivator	2.4 - 3
Airplane applying herbicide	0.2
Knapsack power duster (in rice)	2
Tractor-mounted sprayer (in rice)	0.5
Manual Harvesting, Threshing, and Processing	
Harvesting rice with sickle or knife	60 - 80
Reaping with a scythe	34
Bunding rice into sheaves	24
Hauling sheaves to thresher	39
Threshing rice with hand sticks	182
Threshing rice with flail	20 - 30
Threshing rice on a bamboo ladder	30 - 60
Winnowing grain by tossing in wind	40 kg/h
Hand-driven winnower	200 - 1200 kg/h
Harvesting, Threshing, and Processing with Animals	
2 horses and 6-ft reaper	1.7
4 horses and 8-ft binder	1.4
2 horses and 1-row maize binder	2.8
6 horses and 1-row maize picker	3.2
16 horses and 14-ft combine	1.0
2 horses and 6-ft mower mowing hay	2.0 - 2.4
2 oxen threshing by treading	60 - 89

Rates of Work	Person-h/ha
Engine-Powered Harvesting, Threshing, and	
Processing	
5-hp pedestrian windrower	5.4 - 10
Threshing rice by treading with 5 water	120 kg/h
buffalo	
Threshing rice by treading with tractor	600 - 2000 kg/h
5-hp IRRI axial-flow thresher, 4 men	350 - 700 kg/h
feeding	
Small (1/2-m) combine	0.18 t grain/h

AGRICULTURAL STRUCTURES Air Changes per 24 Hours for Storage Rooms Due to Door Openings and Infiltration (Above 0 C)

44.0
44.U
34.5
29.5
26.0
23.0
20.0
17.5
14.0
12.0
9.5
8.2
7.2
6.5
5.5
4.9
3.9
3.5
3.0
2.7
2.3
2.0
1.6
1.4

AGRICULTURAL STRUCTURES Air Infiltration Through Cracks and Around Windows

Type of window double-hung wood sash	Cubic feet per hour per foot of crack
(unlocked)	
Around frame in masonry wall, not caulked	8
Around frame in masonry wall, caulked	2
Around frame in wood-frame construction	6
Total for Average window, non-weather-stripped,	
1/16-inch crack and 3/64-inch clearance.	
Includes wood-frame leakage	21
Weather-stripped	13
Total for poorly fitted window, non-weather-	
stripped, 3/32-inch crack and 3/32-inch clearance.	
Includes woo-frame leakage	
	69
Weather-stripped	
	19

Animals	Manure Available (kg/day/animal)
Pigs	
Porker, 3-8 months old, mixed ages	2.20
18-36 kg	2.55
36-55 kg	5.22
55-73 kg	6.67
73-91 kg	8.00
Cow	
Feedlot animal	14.0
Breeding animal	13.0
Work animal	7.50
Buffalo	
Breeding animal	14.0
Work animal	8.00
Horse	
Breeding animal	13.50
Work animal	7.75
Chicken	
Layer, 6 months or older	0.075
Broiler, day-old to 8 weeks	0.025

AGRICULTURAL STRUCTURES Daily Manure Production

AGRICULTURAL STRUCTURE Fresh Manure Production and Characteristics per 1000 kg Live Animal Mass per Day

Animal	Total	Urine	Density	Total	Volatile	Animal weight (kg)
type	manure	(kg)	(kg/m^3)	solids	solids	
	(kg)			(kg)	(kg)	
Dairy	86	26	990	12	10	640
Beef	58	18	1000	8.5	7.2	360
Veal	62	-	1000	5.2	2.3	91
Swine	84	39	990	11	8.5	61
Sheep	40	15	1000	11	9.2	27
Goat	41	-	1000	13	-	64
Horse	51	10	1000	15	10	450
Layer	64	-	970	16	12	1.8
Broiler	85	-	1000	22	17	0.9
Turkey	47	-	1000	12	9.1	6.8
Duck	110	-	-	31	19	1.4

ANIMAL STRUCTURE Manure Retention Time

Substrate	Retention time (days)
Liquid pig manure	15 - 25
Liquid cow/carabao manure	20 - 30
Liquid chicken manure	20 - 40
Animal manure mixed with plant material	50 - 80

Mesophilic temperature range

AGRICULTURAL STRUCTURE Feeding Space Requirement for Dairy Cattle

Class, Age, Size of Animal	Length/animal (mm)
Calves (3-6 months)	46
Calves (7 months - one year)	51
Yearling. Heifer, milking and dry cows	76
Cows in maternity stall	

AGRICULTURAL STRUCTURE Feeding Space Requirement for Goat

Animal	Weight (kg)	Feeding space
		(linear mm/animal)
Doe/Ewe	35	350
Doe/Ewe	50	400
Doe/Ewe	70	450
Kid/Lamb		250
Buck/Ram		500

AGRICULTURAL STRUCTURE Feeding Space Requirement for Poultry

	Feeder	
Stages	Linear ^a	Round ^b
	m/100 birds	pieces/100 birds
4 weeks and below	4	4
Above 4 weeks old	7.5	5
^a If both sides of a linear feeder is available to the birds, count each side when figuring		
available space.		
^b 305 mm diameter pan.		

AGRICULTURAL STRUCTURE Daily Water Requirement

	Water Requirement	
Uses	Gpd	m3/day
Each household (min)	50-250	0.189 - 0.945
Each horse	12	0.045
Each cow producing milk	40	0.151
Each dry cow or steer	12	0.045
Each hog	4	0.015
Each sheep	2	0.008
Each 100 chickens	6	0.023
Each 100 turkeys	18	0.068

AGRICULTURAL STRUCTURE Minimum Floor Space Requirement for Cattle

Area	Floor space m ² / animal
Shed area	4
Loafing area	5

AGRICULTURAL STRUCTURE Minimum Space Requirement for Cattle in Crowding Pen

Weight of the cattle	Space requirement
kg	m ² /animal
Up to 270	0.5
270 - 540	0.9
Over 540	1.1

AGRICULTURAL STRUCTURE Minimum Space Requirement for Cattle in Holding Pen

Weight of the cattle Kg	Space requirement m ² /animal
Up to 270	1.3
270 - 540	1.6
Over 540	1.9

AGRICULTURAL STRUCTURE Minimum Space Requirement for Goat and Sheep

Animal	Weight	Floor space (m ² /animal)		
	(kg)	Solid floor	Slatted floor	Open yard
Doe/Ewe	35	0.8	0.7	2
Doe/Ewe	50	1.1	0.9	2.5
Doe/Ewe	70	1.4	1.1	3
Kid/Lamb		0.4-0.5	0.3-0.4	-
Buck/Ram		3.0	2.5	-

AGRICULTURAL STRUCTURE Minimum Space Requirement for Pregnant and Lactating Doe/Ewe

Doe/Ewe	Floor space (m ² /animal)	
	Pregnant	Lactating
Small (50 kg - 70kg)	1.3	2.0
Large (over 70 kg)	1.6	2.3

AGRICULTURAL STRUCTURE Minimum Space Requirement for Dairy Cattle

Class, Age, Size of Animal	Shed or Barn Floor Area (m ² /animal)
Calves (up to 3 months)	1
Calves (3 - 6 months)	2
Calves (7 months - one year)	3
Yearlings (1 - 2 years)	4
Heifer/Steer (2 - 3 years)	5
Milking and dry cows	6
Cows in maternity stall	10

AGRICULTURAL STRUCTURE Minimum Space Requirement for Layers in Pen -Type Housing

Stage	Space requirements m ² /100 birds
Growing (7 - 22 weeks)	
Litter floor	14
Slotted floor	6
Slot-litter floor	7
Laying (beyond 22 weeks)	
Litter floor	17
Slotted floor	9
Slot-litter floor	14

AGRICULTURAL STRUCTURE Minimum Space Requirement for Swine

Age and size of animal	Space requirements per animal m ² / animal
Groups	
Up to 10 kg	0.11
11 - 20 kg	0.20
21 - 40 kg	0.35
41 - 60 kg	0.50
61 - 80 kg	0.70
81 - 100 kg	0.85
Gilts up to mating	1.00
Adult pigs in groups	2.50
Gestating sows	1.20
Lactating sows and litters	
Individual pens	7.40
Multi-suckling groups	5.60
Dry sows	1.80

AGRICULTURAL STRUCTURE Minimum Swine Farrowing Crate Dimension

Measurement	Dimension (m)
Length	1.80
Width of stall	0.60
Width of creep	0.50
Height of stall	1.00
Height of creep	0.40

AGRICULTURAL STRUCTURE Minimum Swine Height of Pen Partitions

Swine	Height of pen partition	
	m	
Under 25 kg	0.70	
25 kg - 100 kg	0.90	
Sow	1.00	
Boar	1.20	

AGRICULTURAL STRUCTURE Minimum Temperature for Housed Swine in Still Air

Class	Temperature	
	°C	
Sows and boars	30	
Piglets		
Newborn	35	
3 weeks	30	
Weaners	30	
Growers and Finishers	30	

AGRICULTURAL STRUCTURE Minimum Ventilation Rates of Swine Under Normal Condition

Stage	Ventilation rate	
	m ³ /min	
Farrowing unit (sow and litter)	0.28	
Nursery pens	0.08	
Growing-finishing pens	0.12	
Breeding and gestating pens		
(gilts, sows and boars)	0.28	

AGRICULTURAL STRUCTURE Recommended Lighting Intensity for Swine Housing

Area	Lighting intensity lux (Lumen/m ²)
Breeding, gestation and furrowing	150
Nurseries	100
Growing and finishing	50
Inspection areas	200

AGRICULTURAL STRUCTURE Chick Brooding Temperature

Age of Chicks (Weeks)	Brooding Temperature (°C)
0 - 1	32.2 - 35.0 (90 - 94°F)
1 - 2	29.4 - 32.2 (90 - 94°F)
2 - 4	26.7 - 29.4 (90 - 94°F)

AGRICULTURAL STRUCTURES Recommended Dimension for Slaughterhouse

Animals	Throughput	Dimension (in meters)
	2	8.6 x 5.8
	(10)	
Large animals or (small	30	12.5 x 6.4
animals)	(150)	
	60	23.3 x 15
	(150-350)	
	200	53 x 21.5
Swine	30	8 x 5
	120	12 x 5
	400	19.4 x 8.4

AGRICULTURAL STRUCTURE Amount of Installed Watts Required for Farm Heating Applicants

Application	Outside	Outside	Estimated laybr used
Application	Outside		Estimated kwhr used
	temperature above	temperature	
	30°F	below 30°F	
Brooding chicks,	2 1/2-3 watts per	3-4 watts per	2-22.5 per chick per 8 wk
infrared	chick	chick	
Brooding chicks,	$1 \frac{1}{2}$ watts per	2-2 1/2 watts per	1 per chick per 8 wk
underheat	chick	chick	
Lamb brooders	250 watts per 2	250 watts per	25 per lamb per wk
	lambs	lamb	
Pig brooders	250 watts per litter	250 watts per	40 per litter per wk
_	_	litter	
Hotbeds	9-10 watts per sq	9-10 watts per	15-20 per 1,000 slips
	ft	sq ft	
Curving sweet	300 bu up to 300	10 watts per bu	1-4 kwhr per bu per curing period
potatoes	bu	up to 300 bu	
	5 watts per bu,	5 watts per bu,	1-4 kwhr per bu per curing period
	300-1000 bu	300-1000 bu	
	4 watts per bu	4 watts per bu	1-4 kwhr per bu per curing period
	over 1000 bu	over 1,000 bu	
Stock watering	0	1 watt per gal	15 per mo

ANIMAL POWER Average Pull, Approximate Speed, and Power Developed by Various Draft Animals

Animal	Ave. Weight	Approx Pull	Ave Speed	Power Developed
	(kg)	(kg)	(m/s)	(hp)
Light Horse	400-700	60-80	1.0	1.0
Bullock	500-900	60-80	0.60-0.85	0.75
Buffaloes	400-900	50-80	0.80-0.90	0.75
Cows	400-600	50-60	0.70	0.45
Mules	350-500	50-60	0.90-1.00	0.70
Donkeys	200-300	30-40	0.70	0.35

ANIMAL POWER Harnessing Factor

No. of Animals	Factor
1	1.0
2	1.9
3	2.5
4	3.1
5	3.5
6	3.8

BEARING Values of Load Factor

Operating Condition	Applications	fw
Smooth operation free from	Electric motors, machine tools, air	1.0 to 1.2
shock	conditioners	
Normal operation	Air blowers, compressors, elevators,	1.2 to 1.5
Operation accompanied by	Contruction machines, crushers,	1.5 to 3.0
shock and vibration	vibration screens, rolling mills	

BEARING Belt and Chain Factor

Type of Transmission	Fb
V belts	2 to 2.5
Flat belts with tension pulley	2.5 to 3
Flat belts	4 to 5
Chain Transmission	1.25 to 1.5

BEARING Gear Factor

Gear Accuracy	Fg
Precision Gears	1 to 1.1
Ordinary machined gears	1.1 to 1.3

BEARING Rules in the Use of Lubricants

Grease is use when	Oil is use when		
1. The temperature is not over 93 C	1. The temperature is over 93 C		
2. Speed are low	2. Speeds are high		
3. Unusual protection is required	3. Oiltight seals are readily employed		
from the entrance of debris			
4. Simple bearing seals are desired	4. Bearing type is not suitable for grease		
5. Operation for long periods without	5. The bearing is lubricated from a central		
attention is desired	supply that is also used for other machine parts		

BIOGAS Gas Production Potential of Various Types of Manure (m³/kg)

Manure	Retention Period (days)				
	25	30	35	50	
Pig	0.058	0.063	0.068	0.077	
Cow	0.030	0.034	0.037	0.043	
Buffalo	0.030	0.034	0.37	0.043	
Horse	0.045	0.051	0.056	0.065	
Chicken	0.060	0.065	0.069	0.078	

Appliances	Туре	Gas Requirements (m ³ /hr)
Gas burner	Non-continuous	
5 cm		0.22
10 cm		0.28
14 cm		0.42
Mantle lamp		
Ordinary	Non-continuous	0.071
25-watt equivalent		0.100
60-watt equivalent		0.195
Gas refrigerator	Continuous	
0.01 m^3		0.053
0.017 m^3		0.067
0.225 m^3		0.078
Incubator (per m ³ capacity)	Continuous	0.600
Gasoline engine	Non-continuous	
Per kW output		0.569
Per rated Kw		0.398
Diesel engine	Non-continuous	
Per kW output		0.700
Per rated kW		0.563

BIOGAS Gas Requirement of Some Appliances

BIOGAS

Optimum Height/Length Ratios of Digesters and Tanks (freeboard excluded) for Volume Up to 70 m³ and Wall Thickness of Up to 25 cm

	Height/Length Ratio, r		
	(Height/Diamete	er or Height/side)	
Horizontal Cross-section	Floating Type (Integrated)	Floating (Separate Gasholder)	
	Plants and Open Tanks	and Fixed Type Plants	
Circular	0.500 1.00		
Square	0.500	1.00	
Rectangular ^a			
L = 1.2 W	0.455	0.91	
L = 1.4 W	0.420	0.84	
L = 1.6 W	0.385 0.77		
^a Coefficient of W is the desired length/width proportion, P			

BIOGAS Retention Time for Animal Manure for Mesophilic Temperature Range

Substrate	Retention time (days)
Liquid pig manure	15 - 25
Liquid cow/carabao manure	20 - 30
Liquid chicken manure	20 - 40
Animal manure mixed with plant material	50 - 80

Organic Materials			
Biodegradable material	N %	C/N	
A. Animal dung			
Hog	2.8	13.7	
Carabao	1.6	23.1	
Cow	1.8	19.9	
Chicken	3.7	9.65	
Duck	0.8	27.4	
Pugo	5.0	6.74	
B. Household waste			
Nightsoil	7.1	6.72	
Kitchen waste	1.9	28.60	
C. Crop residues (air dry)			
Corn stalks	1.2	56.6	
Rice straw	07	51.0	
Corn cobs	1.0	49.9	
Peanut hulls	1.7	31.0	
Cogon	1.07	-	
Bagasse	0.40	-	
D. Others			
Kangkong	4.3	7.8	
Water lily	2.9	11.4	
Grass trimmings	2.5	15.7	

BIOGAS C/N Ratio and Nitrogen Content of Some Organic Materials

BIOGAS

Maximum Excavation Slope on Various Grounds

Kind of soil	Ratio of height to width
Sandy soil	1:1
Clayey sandy soil	1:0.67
Clayey soil	1:0.50
Clay	1:0.33
Soil with gravel	1:0.67
Dry loess	1:0.25

BIOGAS Nutrient Content of Common Animal Excrements

Animal	P ₂ O ₅		K ₂ O	
	kg/a	%	kg/a	%
Cow	34	0.2	84	0.5
Pig	56	0.4	35	0.3
Chicken (fresh dropping)	194	1.0	108	0.6
Chicken (dry droppings)	193	4.6	106	2.5

Biomass Ash	Softening	Melting
	(°C)	(°C)
Almond Shell	790	1140
Alhar Stalks	1275	1480
Bagasse	1325	1435
Bamboo Dust	1325	1425
Bean Straw	900	1150
Barley Straw	925	1100
Coconut Choir	1125	1175
Corn Cobs	900	1020
Corn Fodder	1010	1180
Corn Stalks	820	1091
Cotton Gin Trash	1010	1380
Cotton Stalks	1350	1425
Groundnut Shell	1190	1235
Jute Sticks	1325	1425
Mustard Shell	1375	1425
Olive Pits	850	1480
Pine Needle	1275	1375
Rice Hull	1437	1650
Rice Straw	823	1190
Safflower	770	1430
Sal Seed Leaves	1225	1375
Sal Seed Husk	1475	1525
Tree Prunings	770	1550
Walnut Shell	820	1250
Wood Chip	1050	1190

BIOMASS ENERGY Biomass Ashes Softening and Melting Temperatures

	Biomas	s Heatin	g Value	and Col	npositio	n	
Туре	Higher	Elemental	Analysis				(%
	Heating			by weig	ht, db)		
	Value	С	Н	0	N	S	Ash
	(MJ/kg)						
Fir bark char	19.2	49.9	4.0	24.5	0.1	0.1	21.4
Rice hull char	14.2	36.0	2.6	11.7	0.4	0.1	49.2
Grass straw	19.3	51.0	3.7	19.7	0.5	0.8	24.3
char							
Municipal	18.7	54.9	0.8	1.8	1.1	0.2	41.2
solid waste							
char							
Redwood	28.8	75.6	3.3	18.4	0.2	0.2	2.3
charcoal							
(694-822 K)							
Oak charcoal	24.8	67.7	2.4	14.4	0.4	0.2	14.9
(711 -914 K)							

BIOMASS ENERGY Biomass Heating Value and Composition

BIOMASS ENERGY Crop-Residue Ratio of Biomass Materials

Material	Ratio
Paddy to Husk Ratio	1 : 0.16 to 0.350
Paddy to Paddy Straw Ratio	1 : 0.199 to 2.10
Sugar Cane to Bagasse Ratio	1 : 0.14 to 0.33
Sawdust to Timber Ratio	1: 0.1
Cotton Seed Wool to Stalk Ratio	1 : 1.0 to 5.61
Corn Grain to Cob Ratio	1 : 0.188 to 0.600
Ground Nut Pod to Shell Ratio	1: 0.20 to 0.44
Cassava Root to Cassava Stalk Ratio	1 : 0.161 to 0.500
Coconut Nut to Husk Ratio	1 : 0.28 to 0.45

BIOMASS ENERGY Bulk Density of Biomass Materials

Biomass	Grading	Bulk Density $(1-x)^{(1-3)}$
	1 20 20 50 50	(kg/m^3)
Alfalfa seed straw	cube 30 x 30 x 50 mm 7%	298
	moisture	
Ash, fly		40 - 45
Ash, gas producer, wet		78
Bagasse		7 - 10
Barkwood, refuse		10 - 20
Barley straw	cube 30 x 30 x 50 mm 7%	300
	moisture	
Bean straw	cube 30 x 30 x 50 mm 7%	440
	moisture	
Charcoal		18 - 25
Chip, hogged fuel		10 - 30
Coal, anthracite		60
Coal, bituminous 50 mesh		50 - 54
Coal, lignite		40 - 45
Corn cobs	11% moisture	304
Corn stalk	cube 30 x 30 x 50 mm	391
Cotton gin trash	23% moisture	343
Garbage, household		50
Olive pits	10% moisture	567
Peach pits	11% moisture	474
Peat	dust	400
	briquettes 45 x 65 x 60 mm	600
Prune pits	8% moisture	514

Biomass	% Weight Ash,
	dry basis
Alfalfa Seed Straw, Cubed	6.0
Almond Shell	4.8
Barley Straw Mix	10.3
Bean Straw	10.2
Charcoal	2 - 5
Coffee Hull	1.3
Corn Cobs	1.5
Corn Stalk	6.4
Cotton Gin Trash	17.6
Cubed Cotton Stalks	17.2
Douglar Fir Wood Blocks	0.2
Furfural Residue	12.0
Hogged Wood Manufacturing Residue	0.3
Municipal Tree Pruning	3.0
Olive Pits	3.2
Peach Pits	0.9
Peanut Husk	1.5
Peat (average)	1.6
Prune Pits	0.5
Rice Hull	16 - 23
Safflower Straw	6.0
Wallnut Shell Mix, 1/4 in. Pelleted	5.8
Walnut Shell, Cracked	1.1
Wheat Straw and Corn Stalk	7.4
Wood Chips, Whole Log	0.1

BIOMASS ENERGY Ash Content of Biomass Materials

BIOMASS ENERGY Biomass Fuel Bulk Density

Biomass	Grading	Bulk Density
		(kg/m^3)
Rice hull	cube 30 x 30 x 50 mm	679
	unground, loose	100
Safflower straw	cube 30 x 30 x 50 mm	203
Sawdust	loose	177
	briquettes 100-mm long x 75-mm dia.	555
Slag, blast furnace		80 - 90
Straw	loose	16 - 20
	chopped or ground	50 - 192
	small rectangular bales	112 - 240
	big bales/round bales	48 - 200
	modules	90 - 110
	stack	40 - 48
	cubed	256 - 320
	pellets	300 - 609
Walnut shell	cracked	336
	8 mm pellets	599
Wood, blocks	17% moisture	256
chips	10% moisture	167
Wood	hard	330
	soft	250

BIOMASS ENERGY Bulk Density of Wood and Wood Residues

Residue	Bulk density	Moisture content %
	kg/m ³	
Acacia wood, chopped	170	
Bark, crushed	160-321	
Beech wood chips	180-235	10-40
Pine wood chips	152	
Planer shavings	96	
Rubber wood chips	140	
Sawdust	100-160	
Softwood chips	176-192	Dry
Spruce logs	310-410	
Spruce wood chips	160-240	10-40
Wood, pelleted	560-608	
Hardwood chips	224	
Wood chips	160-481	

BIOMASS ENERGY Bulk Density of Biomass Residue

Residue	Moisture Content (%)	Bulk Density
		(kg/m^3)
Bagasse	10.20	84.90
Cassava Stalks	4.40	143.48
Coconut Husk	10.56	65.74
Coconut Shell	10.13	642.26
Corn Cob	11.13	135.41
Cotton Stalk	9.39	106.00
Paddy Straw	6.85	60.16
Peanut Shell	10.37	252.69
Paddy Husk	8.07	127.58
Sawdust	7.24	171.49

Residue size is 1-2 mm

Residue	Bulk density	Moisture content %
	kg/m ³	
Bagasse	112-160	
Coconut coir	45	
Coconut shells, chopped	330	
Corn stalks, bales	100	10
Flax stive, bales	140	10
Palm oil shells	442	
Rice husks	100	
Rice husks, briquettes	680	
Rice straw, LP Size 10 mm	63-121	13
Rice straw, LP Size 17 mm	46-111	13
Rice straw, LP Size 70 mm	33-64	13
Rice straw, LP Size 170 mm	11-17	13
Rice straw, big roll bale	96-112	Dry
Straw bales stored, inside	160-214	
buildings		
Straw bales stored in the field	107-128	
Straw, bales	60-160	
Straw, chopped	40-60	
Straw, baled	68-80	Dry
Straw, baled	110-200	
Straw, briquettes	300-600	
Straw, briquettes	320-640	Dry
Straw, chopped	40-128	Dry
Straw, hammer-milled	40-100	Dry
Straw, loose	20-80	
Straw, LP	32-64	Dry
Straw, pelleted	560-720	
Wheat stalk, big bale	66-111	Dry
Wheat stalk, small bale	44-67	Dry

BIOMASS ENERGY Bulk Density of Agricultural Residues

Residue]	Proximate Analysis		Gross Calorific
	Volatile Matter	Ash Content	Fixed Carbon	Value
	(%)	(%)	(%)	(kCal/kg)
Bagasse	74.06	6.68	19.26	4,322.5
Cassava Stalks	76.64	3.99	19.37	4,188
Coconut Husk	72.99	3.97	23.04	4,444
Coconut Shell	73.88	6.50	19.62	4,318
Corn Cob	75.64	8.86	15.49	4,232
Cotton Stalk	75.85	5.26	18.88	4,448
Paddy Straw	54.16	21.05	24.79	3,824
Peanut Shell	72.76	7.09	20.15	4,100
Paddy Husk	63.31	22.68	14.01	3,719
Sawdust	82.79	0.70	16.51	4,619

BIOMASS ENERGY Proximate Analysis of Biomass Residue

BIOMASS ENERGY Heating Value, % Volatile, and % Ash of Various Fuel

Type of Biomass		g Values Dry /basis)	Approx. Analysis (% by Weight, Dry basis)		
	Higher	Lower	Volatile	Ash	
Crop Residues	18.45	17.33	72.6	7.25	
Barley straw	17.31	16.22	68.8	10.3	
Bean Straw	17.46	16.3	75.3	5.93	
Corn cobs	18.77	17.55	80.1	1.36	
Corn stover	17.65	16.5	75.17	5.58	
Cotton stalks	18.26	17.15	73.29	5.51	
Rice straw (fresh)	16.28	15.32	69.33	13.42	
Rice straw (weathered)					
	14.56	13.74	62.31	24.36	
Sorghum stalks	15.4	14.32			
Wheat straw	19.23	16.47	71.3	8.9	

BIOMASS ENERGY Energy Consumption of the Different Presses for Biomass Materials

Press	Energy Consumption (kW-hr per ton)
Conical Screw	45 - 55
Cylindrical Screw	12-60
Pellet	10 - 175
Piston	10-150

BIOMASS ENERGY Angle of Repose and Angel of Friction of Biomass Materials

Biomass	Angle of Repose	Angle of Friction
	(deg)	(deg)
Ash, fly	42	
Bagasse	50	
Barkwood, refuse	45	
Charcoal	35	
Chip, hogged fuel	-	
Coal, anthracite	27	
Coal, bituminous 50 mesh	45	
Coal, lignite	38	
Garbage, household	-	
Rice hull	45 - 52	arctan 0.63
Sawdust	36	
Slag, blast furnace	25	
Wood chip	-	

Type of	Ultimate Elemental Analysis							
Biomass			(%	b by Weight	, Dry basis)			
	F.	Carbon	Hydroge	Oxygen	Nitroge	Sulfur	Chlorin	Residu
	Carbon		n		n		e	e
Crop Residues	20.15	46.76	5.4	40.72	1	0.02	0.03	6.07
Alfalfa seed	2154	51.3	5.29	40.9	0.66	0.01	0.04	1.8
straw								
Barley straw	20.9	39.92	5.27	43.81	1.25			9.75
Bean Straw	18.77	42.97	5.59	4493	0.83	0.01	0.13	5.54
Corn cobs	18.54	46.58	5.87	45.46	0.47	0.01	0.221	1.4
Corn stover	19.25	43.65	5.56	43.31	0.61	0.01	0.6	6.26
Cotton stalks	21.2	47.05	5.35	40.77	0.65	0.210	0.08	5.89
Rice straw	17.25	41.78	4.63	36.57	0.7	0.08		15.9
(fresh)								
Rice straw								
(weathered)	13.33	34.6	3.93	35.38	0.93	0.16		25
Sorghum		40	5.2	40.7	1.4	0.22		12.5
stalks								
Wheat straw	19.8	43.2	55	39.4	0.61	0.11	0.28	11.4
Energy Crops								
Sudan grass	18.6	44.58	5.35	39.18	1.21	0.08	0.13	9.47

BIOMASS ENERGY Ultimate Analysis of Biomass Materials

		P	roximate Analys	is	Heating Value
Residue	Moisture	Volatile	Ash	Fixed	BTU/LB
	%	Matter	%	Carbon	
		%			
Coconut husk					
	13.67	66.46-78.42	2.73-9.91	17.31-34.71	7,785-9,686
Coconut shell					
	10.77	74.72-82.86	0.88-1.68	15.91-23.90	8,143-9,929
Rice					
Hull	10.46	57.37-71.34	12.90-28.08	8.75-16.44	5,745-7,186
Rice					
Stalk	11.26	62.63-70.86	14.72-21.76	11.52-25.61	5,653-6,861
Peanut					
Hull	11.56	74.25-75.37	2.56-4.04	20.59-22.19	7,000-7,756

BIOMASS ENERGY Physical and Chemical Properties Biomass Residue

	Moisture content	Condition
	%	
Acacia mearnsii	39	Green
Apple	43	Green
Aspen	44	Green
Birch chips	36	Green
Bole wood	35-60	
Douglas fir	30-60	
Douglas fir, bark	25-75	
Eucalyptus grandis	47	Green
Eucalyptus paniculata	28	Green
Eucalyptus saligna	45	Green
European larch chips	45	Green
Hornbeam	37	Green
Horse-chestnut	48	Green
Maple	39	Green
Mixed softwood	25-37	Air-dried
Mixed softwood chips	31-46	Air-dried
Mixed softwood chips	53-54	
Oak	35	Green
Oak chips	56	Green
Planer shavings	34	Green
Plum	45	Green
Red fir	29	Green
Robinia	42	Green
Sawdust	25-55	
Top wood	35-60	
Tree prunings	35-55	Green
Wood	45-65	Green
Wood bark	30-60	
Wood chips	40-50	
Wood shavings	16-40	

BIOMASS ENERGY Moisture Content Biomass Materials (Wood)

BIOMASS ENERGY Moisture Content Biomass Materials (Agricultural Residues)

	Moisture content	Condition
	%	
Bagasse	40-60	
Barley straw	12-22	
Coconut shells	10-20	
Coffee hulls	65-75	Green
Corn cobs	25-45	
Corn stalks	40-60	
Cotton gin trash	7-12	
Cotton stalks	35-45	Green
Maize straw	50-70	
Peach pits	30-40	
Rice husks	7-10	
Rice straw	12-80	
Straw	16-20	
Straw	30-40	Green
Wheat straw	8-22	

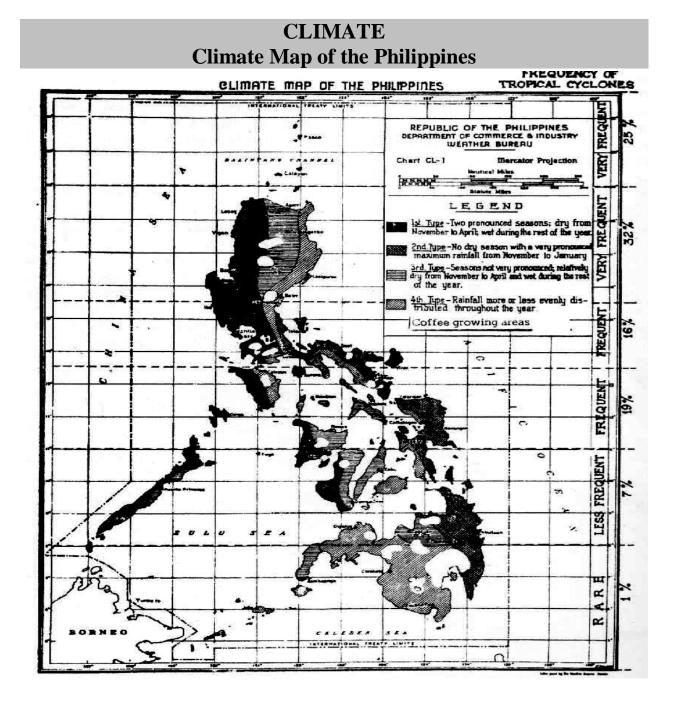
CHARCOAL Proximate Analysis Philippine Hardwood and Coconut Shell charcoal

	Specific	Volatile	Fixed			
Charcoal Species	Gravity	Matter %	carbon	Ash	Heating	Value
			%	%	kcal/kg	BTU/lb
Tangle	0.45	18.60	80.50	0.97	8,580	15,444
Red lauan	0.44	14.54	85.25	0.21	8,610	15,498
Mayapia		19.33	80.45	0.25	9,320	16,776
Apitong	51.64	19.10	79.70	1.20		13,713
Toog	0.61	17.70	79.10	3.40		10,270
Lanipau	0.44	25.70	72.80	1.50		14,000
Bagtikan	0.48	24.05	72.50	3.50		8,933
Mix of lauan &		20.80	78.90	0.33		16,791
tangile						
Mix with red		20.52	78.28	1.20		15,010
lauan, w/ lauan						
bagtikan &						
tangile						
Mix of different		19.40	76.60	3.90		11,700
species						
U.S. Black		20.00	77.00	3.00		7,500
Hickory						
Mixed hardwoods		19.40	76.60	4.0		11,700
Ipil-ipil		26.6	72.1	1.3	7,470	11,800

CHARCOAL Proximate Analysis Philippine Hardwood and Coconut Shell Charcoal

	Specific	Volatile	Fixed			
Charcoal Species	Gravity	Matter %	carbon	Ash	Heating	Value
			%	%	kcal/kg	BTU/lb
Coconut shell		18.8	77.4	3.8	7,394	11,900
Bakauan babae		4.2	90.9	4.9		
Bakauan lalaki		4.1	90.9	5.0		
Mill residue		5.2	80.55	4.3		
Coconut trunks		15.80	77.80	6.4	6,422	
Coconut Husk					5,926	
Lump charcoal					9,600	
(coconut trunk)						

CHEMICAL FORMULA Names and Formula for Chemicals


Popular Name	Chemical Name	Formula
Alcohol, grain	Ethyl alcohol	C ₂ H ₅ OH
Alcohol, wood	Methyl alcohol	CH ₃ OH
Alum, common	Aluminum potassium sulfate	$AlK(SO_4)_2 \cdot 12H_{2+}O$
Alumina	Aluminum oxide	Al ₂ O ₃
Aqua ammonia	Ammonium hydroxide solution	$NH_4OH + H_2O$
Asbestos	Magnesium silicate	Mg ₂ Si ₂ O ₇ .2H ₂ O
Aspirin	Acetylsalicylic acid	$C_2H_3O_2C_6H_4CO_2H$
Baking soda	Sodium bicarbonate	NaHCO ₃
Banana oil	Amyl acetate	$CH_3CO_2C_5H_{11}$
Black lead	Graphite	С
Bleaching powder	Calcium hypochlorite	CaOCl ₂
Boracic acid	Boric acid	H ₃ BO ₃
Borax	Sodium borate	H ₃ BO ₃
Brimstone	Sulfur	S
Brine	Strong sodium chloride solution	NaCl H ₂ O
Caustic potash	Potassium hydroxide	КОН
Caustic soda	Dosium hydroxide	NaOH
Chalk	Calcium carbonate	CaCO ₃
Chloroform	Trichloromethane	CHCl ₃
Cream of tartar	Potassium bitartrate	KHC ₄ H ₄ O ₆
DDT	Dichlorodiphenyltrichloroethane	(C ₆ H).Cl ₂ .CH.CCl ₃
Dry ice	Solid carbon dioxide	CO ₂
Emery powder	Impure aluminum oxide	Al ₂ O ₃
Ethanol	Ethyl alcohol	C ₂ H ₅ OH
Ether	Ethyl ether	$(C_2H_5)_2O$

CHEMICAL FORMULA Names and Formula for Chemicals

Popular Name	Chemical Name	Formula
Formalin	Formaldehyde	НСОН
	Natural magnesium silicate	$H_2Mg_3(SiO_3)_4$
Gypsum	Natural calcium sulfate	CaSO ₄ .2H ₂ O
Javelle water	Originally potassium hypochlorite solution,	$KOCl + H_2O$
	now usually sodium hypochlorite solution	
		$NaOCl + H_2O$
Limewater	Calcium hydroxide solution	$Ca(OH_2) + H_2O$
Magnesia	Magnesium oxide	MgO
Marble	Calcium carbonate	MgCO ₃
Methanol	Methyl alcohol	CH ₃ OH
Milk of magnesia	Magnesium hydroxide in water	Mg(OH) ₂
Natural gas	Mostly methane	CH ₄
Oil of vitriol	Sulfuric acid	H_2SO_4
Oil of	Methyl salicylate	C ₆ H ₄ OHCOOCH ₃
wintergreen		
(artificial)		
Paris green	Cooper aceto-arsenite	$3Cu(AsO_2)_2 \cdot Cu(C_2H_3O_2)_2$
Pearl ash	Potassium carbonate	K ₂ CO ₃
Plaster of Paris	Calcium sulfate	$(CaSO_4)_2 H_2O$
Potash	Potassium carbonate	K ₂ CO ₃
Quicklime	Calcium oxide	CaO
Red lead	Lead tetroxide	Pb ₃ O ₄
Rochelle salt	Potassium sodium	$KnaC_4H_4O_6.4H_2O$
Salt	Sodium chloride	NaCl
Salt cake	Impure sodium sulfate	Na ₂ SO ₄

CHEMICAL FORMULA Names and Formula for Chemicals

Popular Name	Chemical Name	Formula
Salts of tartar	Potassium carbonate	K ₂ CO ₃
Silica	Silicon dioxide	SiO ₂
Slaked lime	Calcium hydroxide	Ca(OH) ₂
Soda ash	Dry sodium carbonate	Na ₂ CO ₃
Talc	Magnesium silicate	$H_2Mg_3(SiO_3)_4$
TNT	Trinitrotoluene	$C_6H_2CH_3(NO_3)_3$
Vinegar	Dilute and impure acetic acid	CH ₃ COOH
Washing soda	Crystalline sodium carbonate	NaHCO ₃
Water glass	Sodium silicate	Na ₂ SiO ₃
Wood alcohol	Methyl alcohol	CH ₃ OH

CONCRETE Mixing Proprotion

Class of mixture	Cement bags 40	Sand		0	Bravel
	kg	Cubic ft.	Cubic m.	Cubic ft	Cubic m.
AA	1	1 1/2	0.043	3	0.085
А	1	2.0	0.057	4	0.113
В	1	2 1/2	0.071	5	0.142
С	1	3	0.085	6	0.170

CONCRETE Mortar Mixing Proportion

Propor-tion	1.1	1.2	1.3	1.4	1.5	1.6
Cement	24.08	16.24	12.04	9.44	7.88	7.60
Sand	0.65	0.87	0.97	1.02	1.06	1.10

CONCRETE Plaster Mixture

Class	Mixture	Cement bags	Lime bags	Sand cu. m.
А	1:2	9.0	9.0	1.0
В	1:3	6.0	6.0	1.0
С	1:4	4.5	4.5	1.0

CONCRETE Cell Volume per Hollow Block

Stock	Cell Volume Per Block			
Width	1 Cell	2 Cells	3 Cells	4 Cells
4"	0.0007	0.0014	0.0021	0.0028
5"	0.001	0.002	0.003	0.004
8"	0.002	0.004	0.006	0.008
3"	None	None	None	None

CONCRETE Plaster Volume per Hallow Blocks

Stock	Plaster Volume per Hallow Block.		
Width	1 Face	2 faces	
4"	0.0010	0.0020	
5"	0.0010	0.0020	
8"	0.0010	0.0020	
3"	0.0010	0.0020	

CONCRETE CHB Laid per Bag of Cement

CHB Size	Number of Pieces
4" x 8" x 16"	55 to 60
6" x 8" x 16"	30 to 36
8" x 8" x 16"	25 to 30

Note: 1 Bag of Cement is equal to one cubic ft.

CONCRETE CHB Finish per Square Meter

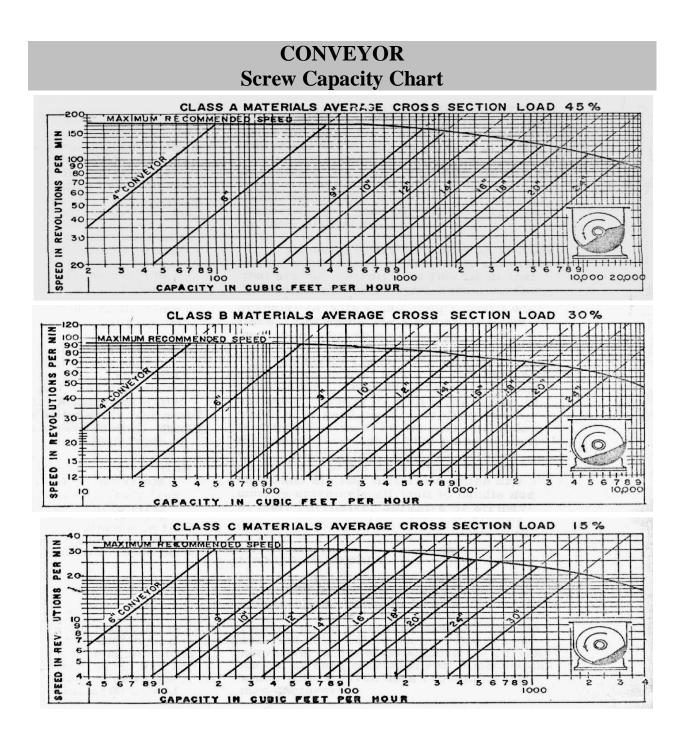
Type of Finishing	Cement (Bag)	Sand (m ³)
Tolled Finish	1/8	0.0107
Plaster Finish	1/4	0.0213

CONCRETE Volume of Cement per CHB

Size	Volume (m ³)
4" x 8" x 16"	0.001
6" x 8" x 16"	0.003
8" x 8" x 16"	0.004

CONCRETE Recommended Mixing proportion

Type of Construction	Proportion
Side Walk 4 in thick	1:2:4
Floor Slab 4 in thick	1:2:4
Wall	1:2.5:5
Footing	1:2.5:5
Post	1:2.5:5
Machinery Foundation	1:3:6
Reinforced Concrete	1:2:4
Foundations	1:2.5:5
Water Roofing	1:2

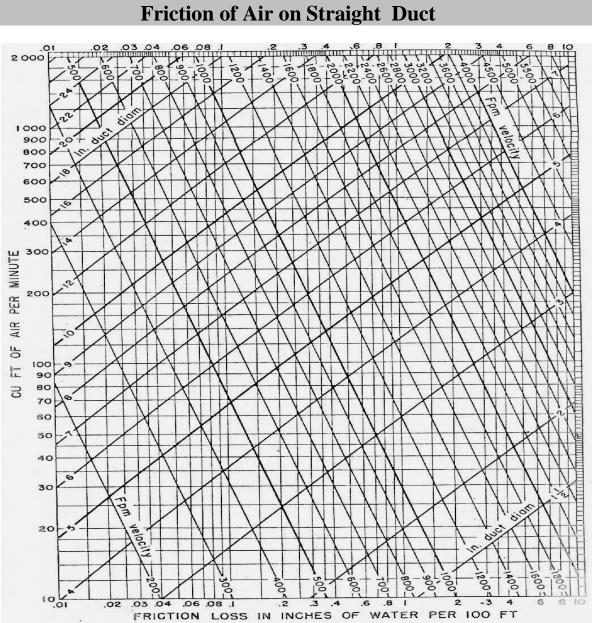

CONVEYOR Revolutions per Minute (rpm) of Pulley Shaft for Various Belt Speeds and Pulley Diameters

Belt speed	Pulley Shaft rpm when Pulley Diameter is							
(m/min)	50 cm	60 cm	76 cm	90 cm	110 cm			
30	20	16	14	11	9			
46	28	24	20	16	14			
61	38	32	25	22	18			
76	48	41	32	27	24			
91	55	48	38	32	27			
107	65	55	45	38	32			
122	75	65	51	43	36			

	Characteristics of various conveyors							
Type of Con- veyor	Type of Material	Capacity	HP Requirement	Cost	Advantages	Dis-advantages		
Screw (Auger)	Ground granular or chopped	medium	Low to nedium	medium	Can be used as mixer or for uniform flow feeder Good for unloading bulk storage Wide range available	Size of material limited Single sections limited in length Medium to heavy wear factor		
Chain	Most feed grains and farm products	medium	medium	Low to medium	Inexpensive Multiple use Wide range available	Noisy Heavy wear factor		
Bucket	Ground granular or lumpy	Medium to high	low	Medium to high	Efficient Minimum High capacity for vertical lift	Limited speed range Difficult to erect Expensive		
Belt	Grain packaged units	High	Low	High	Can be used for distances Low power requirement	Limited in angle of elevation Expensive		

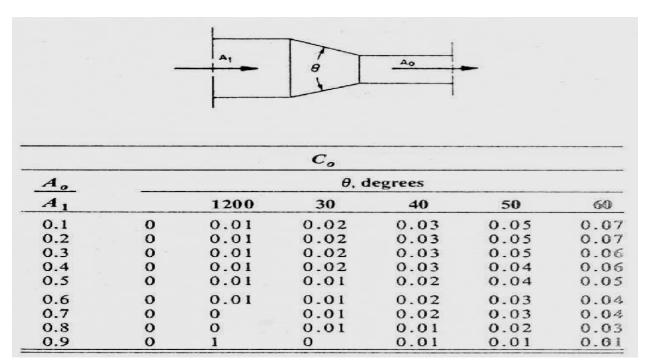
CONVEYOR Characteristics of Various Conveyors

	CONVEYOR Characteristics									
Type of Convey or	Type of Material	Capa- city	HP Require ment	Cost	Advantages	Dis-advantages				
Pneum atic	Grain ground feed chopped forage	Variabl e	High	Low to mediu m	Low first cost Low maintenance Flexibility of installation Easily cleaned	High power requirement Creates dust, usually requires separation equipment Conditions of operation vary with type of material				
Vibrato r	Grain ground feed	Low	Low	High	Can be used as meter Reliable Easily control	Limited capacity Cost				
Oscillat or	Grain, feed roughage	High	Low	Mediu m to High	Efficient Can handle large volumes Can handle several materials	Cost Must be solidly mounted Limited to lengths of about 100 ft				
Pump and Pipe	Liquids, slurries	High	Low	Low to mediu m	Efficient Easy control Low maintenance	Materials limited Subject to freezing				

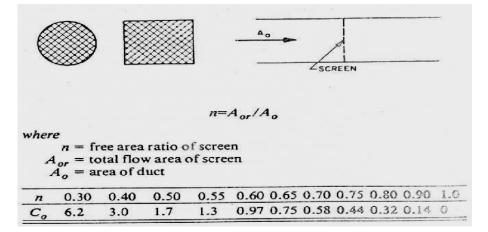


	Bucket size (mm)	Capacity (cm ³)	Normal spacing on belt (mm)	
Length	Projection	Depth		
76	64	64	142	102
102	70	76	283	102
127	89	95	566	127
152	102	114	850	152
178	114	127	1416	165
203	127	140	1982	178
229	152	159	3115	203
254	152	159	3398	203
279	152	159	3681	203
305	152	159	3964	203
305	178	184	5380	229

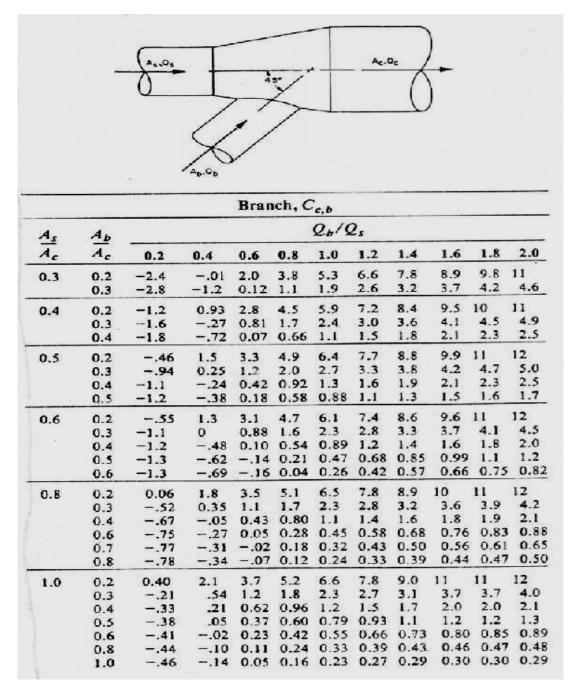

CONVEYOR Dimensions and Capacities of Elevator Buckets


CONVEYOR Capacity Constant for Inclined Conveyor

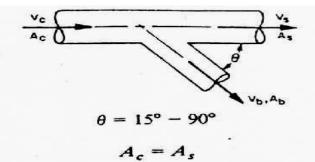
Angle (deg)	Constant
	1.0
20	0.8
40	0.6
60	0.5
80	0.4

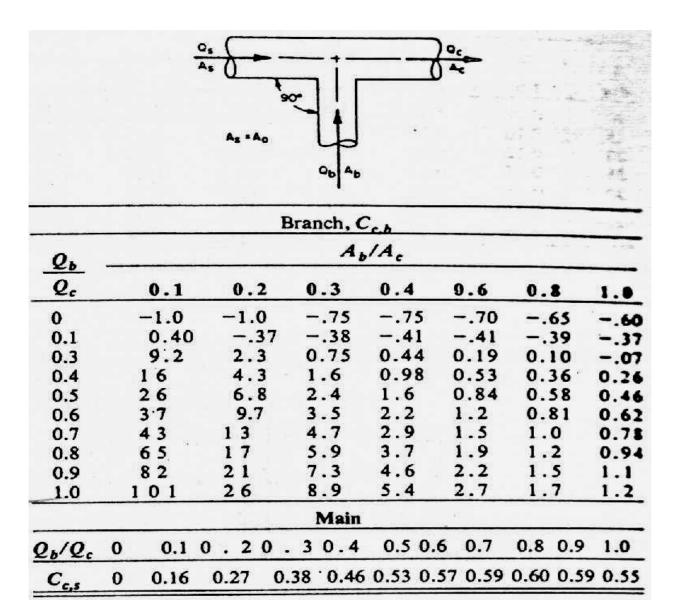


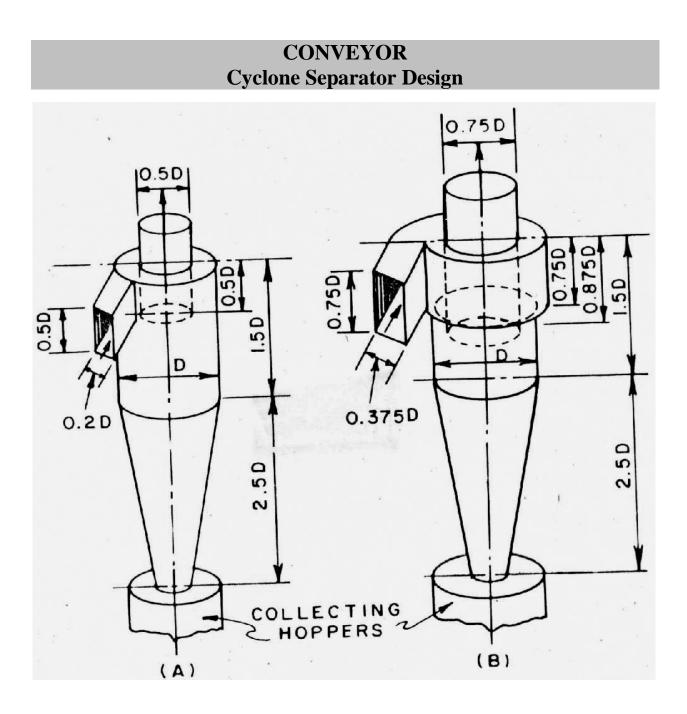
CONVEYOR



CONVEYOR Friction Loss (Obstruction, Rectangular, Round)




			CONV	EYOR			
		Frict	ion Loss	s Coeffic	cient		
	(Conv	verging,	Wye, Re	o <mark>und an</mark>	d Recta	ngle)	
		0 0,	•			U /	
	Vs	(4)vc_		-
	As		45°	·	() Ac		
	0.00	u	7/	1			
			111	As = Ao			
		VD.AD S					
		10.00	\sim				
			Branch,	C.,			
Vh -			and the second s	1Ae			
V.	0.1	0.2	0.3	0.4	0.6	0.8	1.0
0.4	56	44	35	28	15	04	0.05
0.5	48	37	28	21	09	0.02	0.11
0.6	38	27	19	12	0	0.10	0.18
0.7	26	16	08	01	0.10	0.20	0.28
0.8	21	02	0.05	0.12	0.23	0.32	0.40
0.9	0.04	0.13	0.21	0.27	0.37	0.46	0.53
1.0	0.22	0.31	0.38	0.44	0.53	0.62	0.69
1.5	1.4	1.5	1.5	1.6	1.7	1.7	1.8
2.0	31.	3.2	3.2	3.2	3.3	3.3	3.3
2.5	5.3	5.3	5.3	5.4	5.4	5.4	5.4
3.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
			Main,	C _{e,s}			
v,					Ab	IA.	
Ve	0.1	0.2	0.3	0.4	0.6	0.8	1.0
0.1	-8.6	-4.1	-2.5	-1.7	97	58	34
0.2	-6.7	-3.1	-1.9	-1.3	67	36	18
0.3	-5.0	-2.2	-1.3	88	42	19	05
0.4	-3.5	-1.5	88	55	21	05	0.05
0.5	-2.3	95	51	28	06	0.06	0.13
0.6	-1.3	50	22	09	0.05	0.12	0.17
0.7	63	18	03	0.04	0.12	0.16	0.18
0.8	18	0.1	0.07	0.10	0.13	0.15	0.17
0.9	0.03	0.07	0.08	0.09	0.10	0.11	0.13
1.0	-0.01	0	0	0.10	0.02	0.04	0.05


CONVEYOR Friction Loss Coefficient (Diverging, Wye, Round and Rectangle)

				Branch	, C _{c,b}				
Vb					θ, de	grees			
V.		15		30	4	15	6	D	90
0		0.92	0).94	0.	.97	1.0	D	1.0
0.1		0.92	().94	0.	.97	1.4	0	1.0
0.2		0.65	(0.70	0.	.75	0.8	34	1.0
0.4		0.38).46	0.	.60	0.1	75	1.1
0.6		0.20	(0.31	0.	.50	0.65		1.2
0.8		0.09	().25	0.41		0.80		1.3
1.0	141 (141	0.10	(0.25 0.52		0.90		1.3	
1.2		0.11		0.32		0.67		1.1	
1.4		0.22		0.63		0.88		1.4	
1.6		0.41		0.72		. 2	1.8		1.8
2.0		0.99		1.4	1.9		2.7		2.2
2.6		2.5		2.9	2.7		4.6		
3.0		6.5	2011년(1) - 2012년(1) - 2012년(1) - 2211(2) - 221(2)		3				
		_F	-	M	ain				
Vs/Vc	0	0.1	0.2	0.3	0.4	0.5	0.6	0.8	1.0
C _{c,s}	0.40	0.32	0.26	0.20	0.15	0.10	0.06	0.02	0

High Efficiency

Medium Efficiency

	-			
Type of dust or	Process or Operation	Required Air Velocities		
Fine		(ft/r	nin)	
		At Dust Source	At Face of Hood	
Fine powders	Bagging	200-400		
_	Belt conveyor (at transfer point)	250		
Grain	Elevator boot and head		1500	
Granite	Hand pneumatic tool	200		
	Surfacing machines	1500		
	All tools		500	
Grinder	Swing grinder		200	
Lead	Metal spraying	200		
Sand	Bagging	400		
Welding	Electric welding	200		
Zinc	Metal Spraying	125		

CONVEYOR Velocities for Controlling Various Types of Dust

CONVEYOR

Air Velocities Needed to Convey Solids of Various Bulk Densities

Bulk Density (lb/ft ³)	Air velocity
10	2900
20	4120
30	5050
40	5840
50	6500
60	7150
70	7100
80	8250
90	8700
100	9200
110	9700
120	10,500

Material	Conveying Velocities	
	(ft/min)	
Barley	5000 - 6500	
Beans	6000	
Coffee Beans	3000 - 3500	
Corn, shelled	5000 - 7000	
Cotton	4000 - 6000	
Cotton seed	4000 - 6000	
Chopped hay	4000	
Ensilage	6000	
Oats	4500 - 6000	
Rags	4500 - 6500	
Salt	5500 - 7500	
Sand	6000 - 9000	
Sawdust	4000 - 6000	
Wheat	5000 - 7000	
Wool	4500 - 6000	

CONVEYOR Recommended Conveying Velocities for Various Materials

CONVEYOR Approximate Relative Capacity of Chain Conveyor

Inclination	Factor	
20	0.77	
30	0.55	
40	0.33	

CONVEYOR Constants for Determining Horsepower for Belt Conveyors

Conveyor belt width	Constants		Additional hp for
(cm)	А	В	tripper
36	0.20	0.00140	0.70
41	0.25	0.00140	0.85
46	0.30	0.00162	1.00
50	0.30	0.00187	1.40
60	0.36	0.00224	1.70
76	0.48	0.00298	2.50

CONVEYOR Cross-Section Area of Loaded Belt and Maximum Belt Speeds

Belt width (cm)	Clear margin (cm)	Total cross section area (m^2) for 20° surcharge	Operation speed ^a (m/min)	
		angle	Normal	Maximum
30.5	4.1	0.0072	61	122
35.6	4.3	0.0089	61	122
40.6	4.6	0.0122	61	137
45.7	4.8	0.0161	76	137
50.8	5.1	0.0204	76	152
61.0	5.6	0.0308	91	183
76.2	6.4	0.0504	107	213

^a Belt speed should be 91 m/min where a tripper is to be used, and 46-76 m/min where a plow is to be used.

COOKSTOVE Thermal Efficiency of Various Cookstoves

Stove	Efficiency (%)
Wood Stove	
Open Fire	3-11
Improved	11- 30
Charcoal Stove	
Traditional	2-9
Improved	4 - 12

COOKSTOVE Heat Utilization

Stove	Heat Utilization Efficiency	
	(%)	
Traditional Open Fire	8.0	
Thai Charcoal Stove	3.1	
Two-Pot Uninsulated Metal Wood Stove w/	27.9	
Chimney		
Two-Pot Massive Wood Stove w/ Chimney	15.4	
Three-Pot Massive Wood Stove w/ Chimney	6.0	

COOKSTOVE Efficiencies Charcoal Fuel Cookstove

Cookstoves	Efficiency (%)	
Cambodian traditional	14.5	
Thai-bucket cookstove	16.2	
Chinese traditional	12.5	
QB Phil. charcoal/firewood	27.0	
Phil. charcoal/wood	21.5	
Lao improved	16.5	
Vietnamese improved	25.0	
Malaysian improved	18.0	
Bang Sue stove	18.2	

COOKSTOVE Efficiencies Wood-Fired Cookstove

Cookstoves	Efficiency (%)		
Cambodian traditional	11.0		
Lao traditional	14.3		
Vietnamese traditional	15		
Nepalese one-pot ceramic	10.5		
Thai-bucket cookstove	15		
Roi-et cement	11.4		
RTFD improved wood/char	15.0		
Rungsit stove	12.0		
Chinese traditional	12.2		
Malaysian traditional	9.5		
Phil. charcoal/wood	12.0		
Nepal one-pot metal	13		
Nepalese two-pot ceramic	13.0		
Indian "Harsha" cookstove	25.2		
Saengpen, nam char wood cement	17.5		
Bang Sue stove	18.2		
Malaysian improved	19.7		

CORN MILL Performance Criteria

Criteria	Performance Data
Main Product Recovery, percent minimum of the product input	
a) Grit # 10	28
b) Grit # 12	21
c) Grit # 14	7
d) Grit # 16	6
e) Grit # 18	2
Main Product, percent, minimum	64
By-Product, percent, maximum	31
Losses, percent, maximum	5
Grits of other sizes, percent, minimum	7
Degerminator Efficiency, percent, minimum	80
Noise Level, [db (A)], maximum	92*

* Allowance noise for six (6) hours of continuous exposure based on Occupational Safety and Health Standards, Ministry of Labor, Philippines. 1983.

Crops	Depth per	Average	Critical Period	Remarks
	Year or Per	Growing		
	Season (cm)	Period (days)		
Banana	15-30	Annual	Early growth stage	Requires excellent drainage for the entire root zone. Since the roots are deep, the soil must be drained to a far greater depth
Bean	30-50	60-90	Flowering and pod development	Vegetative period is not sensitive when followed by ample water supply.
Cabbage	30	70-90	Head formation and	
			enlargement	
Cacao Cassava	45-200	Perennial	-	Waterlogged areas and areas with prolonged drought are not good. Cacao is ruined by flooding for several weeks, but it is adversely affected by stagnant water, thus drainage is necessary for heavy soils. It can withstand periods of prolonged drought except at planting
Cauliflower	-	_	No critical moisture sensitive stage; frequent irrigation required from planting to harvest	planting. –
Citrus	90-120	Perennial	During flushes of new growth fruits setting, and rapid increase of fruit size	Sticky and poorly drained soils should be avoided. No stagnant water should stand in the grove as this will enhance disease development particularly in the trunk and root system.

Crops	Depth per Year or Per Season (cm)	Average Growing Period	Critical Period	Remarks
Corn	60	(days) 90-120	Silking and ear development	Last irrigation of corn has to be done in the middle of the reproductive stage (kernel formation) since yield tends to become low when not irrigated up to the productive stage growth. Corn as to be irrigated, at least, once every 2 weeks (DS) up to the reproductive stage of growth. It should not be allowed under the waterlogged condition at any time for more than 2 days.
Cotton	70-130	150-180	Flowering period	Over supply of water retards fruiting and branch development, and delays maturity. It should not be allowed under waterlogged conditions at any stage of growth for more than 4 days.
Cowpe a	35-50	110-120	_	A weekly irrigation of 35 mm throughout the growing season of the crop will ensure crops of good quality.
Cucum ber	30	60-70	_	It is relatively tolerant to high moisture especially when the soil is easily drained. During dry-season planting, a weekly irrigation of 35-40 mm would be best for the crop.
Eggpla nt	50	90-120	_	During dry season planting, a weekly irrigation of 35-40 mm would be best for the crop.

Crops	Depth per	Average	Critical Period	Remarks
	Year or Per	Growing		
	Season (cm)	Period		
		(days)		
Garlic	36-40	90-120	_	This requires moderately wet soil.
Grapes	50-120	180-270	Shoot elongation and flowering, fruit filling	
Lettuce	30	40-50	Just before harvest when the ground cover is complete	
Mungo	40	90-100	Germination and at flowering stage and pod-filling stage	-
Onion	35-55	90-100	During the period of root and bulb formation	_
Papaya	120	_	_	Constant availability of soil moisture is associated with continuous growth which results in the regular production of flowers and fruits. Root system is sensitive to standing water; 2 days immersion is fatal.
Peanut	58	140-160	Peak of flowering to early fruiting	
Peas	35-50	65-100	Start of flowering and when pods	_
		fresh 85-	are swelling	
		120 dry		
Pechay	30	40-60	_	_

	Water Requirement			
Crops	Depth per Year or Per Season (cm)	Average Growing Period (days)	Critical Period	Remarks
Pili	_		_	Sufficient water should be available during the dry months to irrigate the plants. During the succeeding years, either a small amount or no irrigation is necessary.
Potato	50-70	100-150	Period of stolonozation and tuber initiation	Drought even for short period can have serious effect on yield and quality of crop, especially when it is accompanied with high temperature or it occurs during the last 9 weeks of growth. Inadequate or irregular water supply not only results in poor yield.
Radish	30	40-60	Period of rooting and bulb formation	An evenly distributed rainfall is required.
Soybean	45-70	100-120	Germination and pod development	It can withstand short drought without injury; can tolerate waterlogged conditions at any stage of growth of not more than 8 days.
Squash	45-70	100-130	_	-
Sugarcane	150-250	270-365	Vegetative period, particularly during period of tillering and stem elongation	Dry condition at maturation stage is extremely helpful in the accumulation of sugar in the plant; therefore, no irrigation is needed when the crop reaches the flowering stage.

Crops	Depth per	Average	Critical Period	Remarks
1	Year or Per	Growing		
	Season (cm)	Period		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(days)		
Sweet Potato	46	60-120	After formation of tubers	An annual rainfall of 30-50 cm is considered to be best with low humidity, as the crop reaches maturity. It can tolerate considerable periods of drought but yields are very much reduced if a water shortage occurs 50-60 days after planting when shortage root initiation has begun.
Sweet	58	90-120	Throughout the growth period	
Pepper			but particularly just prior and at	_
			start of flowering	
Taro	250	_	_	It is primarily adapted to moist environments, but can be grown under a wide range of conditions, from paddy culture to dry upland conditions under irrigation. It is necessary to provide sufficient water for vegetative growth or leaf development when grown in dry upland areas where rainfall is less than 175 cm. The use of furrow and sprinkler irrigation has proved satisfactorily.

Crops	Depth per Year or Per	Average Growing	Critical Period	Remarks
	Season (cm)	Period		
		(days)		
Tobacco	40-60	40-60	Period of rapid growth; knee high to	It is relatively drought-
			blossoming	tolerant but sensitive to
			_	flooding.
Yam	115 or	_	Requires adequate moisture	It is greatly considered
			throughout growing period	drought-resistant. For
				optimum yield, adequate
				moisture between the 14 th
				and 20 th weeks of growth is
				of great importance. The
				major areas of production
				are centered where there is a
				sharply demarcated dry
				season of 2-5 months and a
				rainfall of 115 cm or more
				during the growing season.

Crop	Water	Ave. Growing	Expected	Critical Period
1	Requirement	Period	Yield	
	(cm ³ /season)	(days)	(t/ha)	
Corn	60	80 - 115	4 - 7	Silking and ear formation
Cucumber	30	45 - 60	-	
Eggplant	30	90 - 120	9.5	Flowering and fruiting vegetative
				stage
Garlic	40	90 - 120	-	Vegetative stage
Mungbean	30 - 50	60 - 90	1.2	Flowering and pod formation
Onion	35 - 55	90 - 120	22.0	Root and bulb formation
Peanut	58	140 - 160	1.5	Peak flowering and early fruiting
Peas	30 - 50	100 - 102	2.3	Flowering and pod formation
Pechay	30	40 - 60	-	
Pole sitao	50	50 - 60	10 - 13	Flowering
Soybean	45 - 70	100 - 120	1.5	Germination and pod filling
Squash	45 - 60	100 - 130	15 - 26	Flowering
Sunflower	45 - 50	80 - 95	1.0	Planting and heading stage
Sweetpotato	20	90 - 120	10.0	At planting and 40-60 days after
				planting
Tomato	40 - 60	90 - 140	40.0	Vegetative stage
Watermelon	56	90 - 120	15 - 26	

## CROPS Water Requirement of Selected Non-Rice Crops

## DAIRY PRODUCT Storage Life

Product	Storage	Relative humidity %	Storage life
	temperature°C		
Butter	0 to -4.5	80 to 85	1 to 3 months
Butter, frozen	-15 to -20	70 to 85	8 to 12 months
Cheese, blue	+2 to +4	80 to 90	2 to 4 moths
Cheese, cottage	-1 to +2		2 to 3 weeks
Cheese, cream	0 to +2		2 to 3 weeks
Cheese, Camembert	-1 to +2	65 to 75	1 to 9 months
Cheese, Cheddar	-1 to +2	65 to 70	3 to 12 months
Cheese, Swiss	+2 to +4	80 to 85	4 to 10 months
Cream, double	+1 to +3		2 to 5 days
Cream, whipped	+1 to +3		2 to 5 days
Cream, frozen	-20 to -30		2 to 3 months
Cream, single	+1 to +3		2 to 5 days
Eggs, yolk dried	+5 to +10	Low	1 to 4 months
Eggs, shell	0 to +2	85 to 90	5 to 6 months
Eggs, white	0 to +2	85 to 90	6 to 12 months
Eggs, white dried	+5 to +10	Low	1 to 5 months
Eggs, whole dried	+5 to +10	Low	1 to 4 months
Eggs, whole	0 to +2	85 to 90	9 to 12 months
Eggs, yolk	0 to +2	85 to 90	6 to 12 months
Ice cream	-20 to -30		1 to 2 months
Milk, dried	+7 to +13	Low	1 to 4 months
Milk, skimmed	+0.5 to +10		5 to7 days
Milk, condensed	+4 to +7		2 to 4 months
Milk, evaporated	+5 to +20		6 to 12 months
Milk, pasteurized	+0.5 to +2		5 to7 days

Thermal Properties					
Product	Freezing temperature °C	Specific heat above freezing kJ/kg °C	Specific heat below freezing kJ/kg °C	Latent heat kJ/kg	
Butter	-5	1.38		53	
Butter, frozen	-5		1.05		
Cheese, blue	-16	2.68	1.35	135	
Cheese, cottage		3.65	1.86	2.65	
Cheese, cream		2.95	1.45	170	
Cheese, Camembert		2.05	1.04	55	
Cheese, Cheddar	-12	2.10	1.30	126	
Cheese, Swiss	-10	2.6	1.35	130	
Cream, double	-2	3.69	1.85	270	
Cream, whipped	-2	3.1	1.55	190	
Cream, frozen		1.7			
Cream, single	-2	3.27		242	
Eggs, yolk dried		1.55	0.77	9	
Eggs, shell	-2	3.55	1.74	243	
Eggs, white	-0.5	3.9	1.94	290	
Eggs, white dried		1.9	0.95	31	
Eggs, whole dried		1.8	0.89	13	
Eggs, whole	-2	3.55	1.76	246	
Eggs, yolk	-0.5	2.95	1.5	170	
Ice cream		3.2	1.63	207	
Milk, dried		1.75	0.88		
Milk, skimmed	-0.5	3.9	1.95	304	
Milk, condensed	-15	2.4	1.19	93	
Milk, evaporated	-2	3.5	1.7	246	
Milk, pasteurized	-0.5	3.8	1.9	290	

Tray Loading Density					
Classification	Product	Loading Capacity			
Fruits	Sliced Mango	0.54 kg/sq ft			
	Jack fruit	0.54 kg/sq ft			
	Sweet Potato Chips	0.35 kg/sq ft			
Vegetables	Chili	0.39 kg/sq ft			
	Cassava	1.25 kg/sq ft			
	Carrots	1.25 kg/sq ft			
	Bell Paper	0.77 kg/sq ft			
Fish	Tabagak (whole)	0.56 kg/sq ft			
	Abo (whole)	0.78 kg/sq ft			
	Bangus (split)	0.76 kg/sq ft			
	Bilong Bilong (whole)	0.46 kg/sq ft			
	Tamudios (split)	0.46 kg/sq ft			
	Sap sap (whole)	0.57 kg/sq ft			
	Dalino an (split)	0.37 kg/sq ft			
	Panit (split)	0.65 kg/sq ft			

DRYER

## DRYER Recommended Drying Temperature

Crops	Drying Temperature (C)
Grains and Cereals	
For seeds	40 - 45
For milling or processing	40 - 55
Sliced Fruits or Vegetables	50 - 70
Fish	40 - 70
Green leaves	35-40

## DRYER Recommended Drying-Air Temperature

Purpose	Grain				
	Rice	Corn	Sorghum	Soybean	
Seed	43	43	43	43	
Commercial	43	55	60	50	
Animal Feed	-	83	83	83	

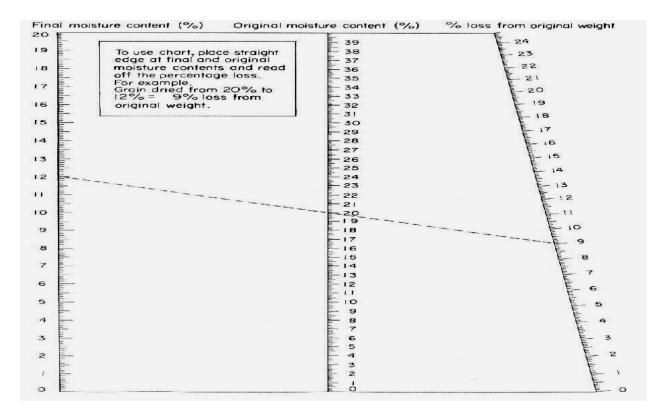
#### DRYER Recommended Airflow Rates for Various Grain Drying Systems.

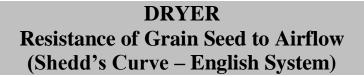
Dryer Type	Capacity (ton)	Approx. Airflow Rate (m ³ /min-ton)
Batch-in-bin		
Small	2	50
Large	100	23
Recirculating Batch		
Small	5	56 - 85
Large	10	70 - 100
Continuous Flow		
Small	5 - 10	85 - 115
Large	10 - 25	115 - 140

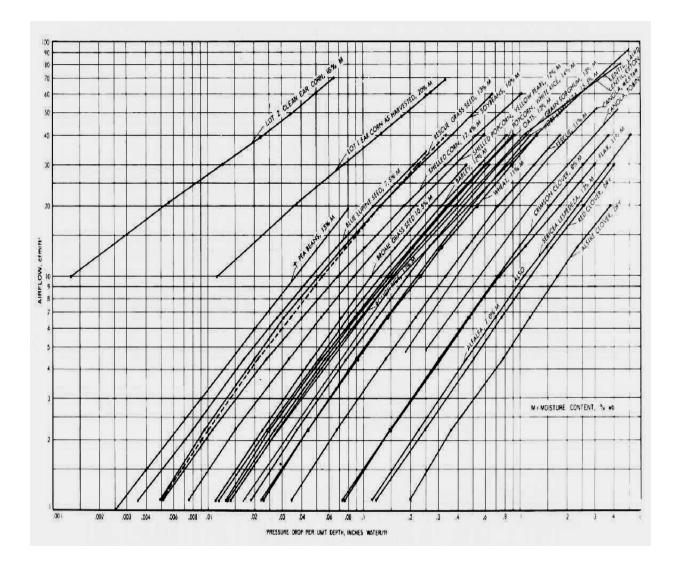
	Specifications for various Dijers							
Item	Batch-	in-Bin	Recircul	ating Bin	Continuo	us-Flow		
	Small	Large	Small	Large	Small	Large		
Capacity (t)	2	100	5	10	5-10	10-25		
Approx. hp	3	10	15	25	15-20	25-50		
Approx. airflow								
$(m^3/min per t)$	50	23	56-85	70-100	85-155	155-140		
Approx. drying								
air	43	43	60-80	60-80	60-80	60-80		
Temperature (°C)								
Approx. burner	_							
capacity (Btu/hr)	$1 \ge 10^5$	$4 \times 10^{6}$	$2 \times 10^{6}$	$4 \ge 10^{6}$	$4 \ge 10^{6}$	$8 \ge 10^6$		

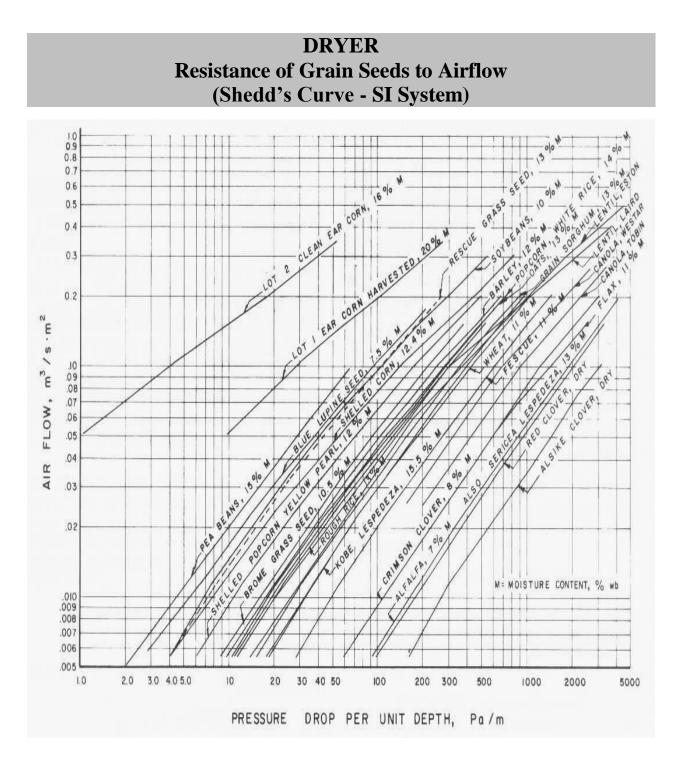
#### DRYER Specifications for Various Dryers

#### DRYER Recommended Maximum Grain Depth and Minimum Airflow for Natural Drying of Paddy


	Moisture Content (%)					
	18 20 22					
Recommended Depth (m)	2.44	2.44	1.83			
Recommended Minimum Airflow (m ³ /sec/m ³ )	0.0269	0.0403	0.0538			


# DRYER


#### **Performance Requirements for Mechanical Dryers**


Criteria	Batch	Continuous Flow
Moisture Gradient, max	2.0	2.0
Product Quality		
Cracked Grain % Increase, max	5.0	2.0
Head Yield % Reduction, max	5.0	5.0
Hulled/Damaged Grain Increase, max	3.0	3.0
Spillage %, max	0.5	0.5
Heat Utilization %, min	7.5	70

#### DRYER Percentage Moisture Loss









Vegetable	Suitability for Drying
Asparagus	Poor to fair
Beans, green	Fair to good
Beans, lima	Fair
Broccoli	Not recommended
Cabbage	Fair
Carrots	Good
Cauliflower	Poor
Celery	Poor
Okra	Fair to good
Onions	Good to excellent
Peas	Fair to good
Peppers, green or red	Good
Peppers, chili	Excellent
Popcorn	Good
Potatoes	Good
Pumpkins	Fair to good
Radishes	Not recommended
Corn, sweet	Good
Cucumbers	Poor
Eggplant	Poor to fair
Garlic	Good
Horseradish	Good
Lettuce	Not recommended
Mushrooms	Good
Mustard greens	Poor
Squash	Poor to fair
Sweet potatoes	Fair
Tomatoes	Fair to good
Turnips	Fair to good
Yams	Fair

## DRYER Suitability for Drying Vegetables

v o	<b>1</b>	<b>_</b>	8	
		Blanchi	ing Time	Drying
Vegetable	Preparation	Steam	Water (min)	Time
		(min)		(Hours)
Asparagus	Wash thoroughly. Cut large	4 - 5	3à - 4à	4 - 6
	tips in half.			
Beans, green	Wash thoroughly. Cut in short			
	pieces or lengthwise. (May	2 - 2à	2	8 - 14
	freeze for 30 to 40 minutes			
	after blanching for better			
	texture)			
Broccoli	Trim, cut as for serving. Wash			
	thoroughly. Quarter stalks	3 - 3à	2	12 - 15
	lengthwise.			
Cabbage	Remove outer leaves; quarter			
	and core. Cut into strips 1/8	2 1/2 - 3**	1à - 2	10 -12
	inch thick.			
Carrots	Use only crisp, tender carrots.	3 - 3à	3à	10-12
	Wash thoroughly. Cut off roots			
	and tops; preferably peel, cut			
	in slices or strips 1/8-inch thick			
Cauliflower	Prepare as for serving.	4 - 5	3 - 4	12 - 15

## DRYER

## **Drying Time and Preparation Requirement of Vegetables**

Diving time and i reparation requirement of vegetables							
		Blanchi	ng Time	Drying Time (Hours)			
Vegetable	Preparation	Steam	Water				
		(min)	(min)				
Celery	Trim stalks. Wash stalks						
	and leaves thoroughly.	2	2	10 - 16			
	Slice stalks						
Corn, cut	Select tender, mature						
	sweet corn. Husk and	5 - 6	4 - 5	6 - 10			
	trim. Cut the kernels from						
	the cob after blanching.						
Eggplant	Use the directions for						
	summer squash	3à	3	12 - 14			
Garlic	Peel and finely chop garlic						
	bulbs. No other	No blanchi	ng needed.	6 - 8			
	pretreatment is needed.	_					
	Odor is pungent						
Horseradish	orseradish Wash; remove small						
rootlets and stubs. Peel or		None		4 - 10			
	scrape roots. Grate.						

## DRYER Drying Time and Preparation Requirement of Vegetables

Diym	g Thie and Treparation	Jii Kequi		i vegetables
		Blanchi	ng Time	Drying Time (Hours)
Vegetable	Preparation	Steam	Water	
			(min)	
Mushrooms	Scrub thoroughly. Discard			
	any tough, woody stalks.	No	one	8 - 10
	Cut tender stalks into short			
	sections. Do not peel small			
	mushrooms. Peel large			
	mushrooms, slice.			
Okra	Wash, trim, slice crosswise			
	in 1/8 to an inch disks.	No	one	8 - 10
Onions	Wash remove outer "paper			
	shell". Remove tops and	No	one	3 - 9
	root ends, slice 1/8-to an			
	inch thick.		1	
Peas, green	Shell.	3	2	8 - 10
Peppers and	Wash, stem, core. Remove			
Pimientos	Pimientos "partitions." Cut into disks		one	8 - 12
	about 3/8-by 3/8-inch			
Potatoes Wash, peel. Cut into				
	shoestring strips an inch	6 - 8	5 - 6	8 - 12
	thick, or cut in slices 1/8-			
	inch thick.			

## DRYER Drying Time and Preparation Requirement of Vegetables

Drying Thic and Treparation Requirement of Vegetables							
		Blanchi	ng Time	Drying Time (Hours)			
Vegetable	Preparation	Steam	Water				
		(min)	(min)				
Pumpkin and	Cut or break into pieces.						
hubbard	Remove seeds and cavity	2 - 3à	1	10 - 16			
squash	pulp. Cut into 1-inch						
	strips. Peel rind. Cut strips						
	crosswise into pieces						
	about 1/8-inch thick						
Squash,	Wash, trim, cut into an						
summer	inch slices	2à - 3	1à	10 - 12			
Tomatoes, for	Steam or dip in boiling						
stewing	water to loosen skins.	3	1	10 -18			
	Chill in cold water. Peel.						
Cut into sections about an inch wide, or slice. Cut							
	small pear or plum						
	tomatoes in half.						

## DRYER Drying Time and Preparation Requirement of Vegetables

		Pretre	atment (Choose	e One)		Drying
		Sulfur	Bla	inch		Timer
Fruit	Prepa-ration		Steam (min)	Syrup (min)	Other	(hours)
Apples	Peel and core cut into slices or rings about 1/8-inch thick	3/4	3-5 (depending on texture)	10	-ascorbic acid solution- ascorbic acid mixture- fruit juice dip-sulfate dip	6-12
Apricots	Pit and halve. May slice if desired.	2	3-4	10	-ascorbic acid solution- ascorbic acid mixture- fruit juice dip-sulfate dip	24-36
Bananas	Use solid yellow or slightly brown- flecked bananas. Avoid bruised or overripe bananas. Peel and slice 1/4- inch to 1/8-inch thick, crosswise or lengthwise.				-honey dip- ascorbic acid solution- ascorbic acid mixture-fruit juice dip-sulfite dip	8-10

		Pretreatment (Choose One)				Drying
		Sulfur	Bla	unch		Timer
Fruit	Prepa-ration		Steam	Syrup	Other	(hours)
			(min)	(min)		
Berries	Wash and drain				-plunge into boiling	
	berries.				water 15-30 seconds to	24-36
					"check" skins. Stop	
Firm:	With waxy				cooking action by	
	coating				placing fruit in ice	
	blueberries,				water. Drain on paper	
	cranberries,				towels	
	currants,					24.24
Soft:	gooseberries,				-no treatment necessary	24-36
	huckleberries					
	Boysenberries					
	and					
	strawberries					
	Stem, wash,			10 (for sour	-whole: dip in boiling	
	drain, and pit			cherries)	water 30 seconds or	24-36
Cherries	fully ripe				more to check skins	2.35
	cherries. Cut in				cut and pitted: no	
	half, chop or				treatment necessary	
	leave whole.				j	

		Pretreatment (Choose One)				Drying
			Sulfur Blanch			Timer
Fruit	Prepa-ration		Steam	Syrup	Other	(hours)
			(min)	(min)		
	Peels of citron,					
	grapefruit,				-No treatment	8-12
	kumquat, lime,					
Citrus	lemon, tangelo					
peel	and tangerine					
-	can be dried.					
	Thick-skinned					
	navel orange					
	peel dries better					
	than thin-					
	skinned					
	Valencia peel.					
	Wash					
	thoroughly.					
	Remove outer					
	1/6-to 1/8-inch					
	of peel. Avoid					
	white bitter					
	pith.					

	<b>Drying Tin</b>	ne and Pro	eparatio	n Requi	rement for Fruit	S
		Pretrea	tment (Choose	One)		Drying
		Sulfur	Bla	nch		Timer
Fruit	Prepa-ration		Steam (min)	Syrup (min)	Other	(hours)
Figs	Select fully ripe fruit. Immature fruit may sour before drying. Wash or clean whole fruit with damp cloth. Leave small fruit whole, otherwise cut in half.	1 (whole)			-Whole: dip in boiling water 30 seconds or more to check skins. Plunge in ice water to stop further cooking. Drain on paper towels.	6-12**
Grapes Seedless: With Seeds:	Leave whole -Cut in half and remove seeds.				<ul> <li>-Whole: dip in boiling water 30 seconds or more to check skins.</li> <li>Plunge in ice water to stop further cooking.</li> <li>Drain on paper towels.</li> <li>-Halves: No treatment necessary.</li> </ul>	12-20

		Pretreatment (Choose One)				Drying
		Sulfur Blanch			Timer	
Fruit	Prepa-ration		Steam (min)	Syrup (min)	Other	(hours)
Nectarin es and Peaches	When sulfuring pit and halve; if desired, remove skins. For steam and syrup blanching, leave whole, then pit and halve. May also be sliced on quartered.	2-3 (halves) 1 (slices)	8	10	-ascorbic acid solution- ascorbic acid mixture- fruit juice dip-sulfuring	36-48**
Pears	Cut in half and core. Peeling preferred. May also slice or quarter.	5 (halves) 2 (slices)	6 (halves)	10	-ascorbic acid solution- ascorbic acid mixture- fruit dip.	-sulfiting 24-36**

#### Pretreatment (Choose One) Drying Timer Sulfur Blanch Fruit Prepa-ration Other (hours) Steam Syrup (min) (min) Use firm fruit of -may syrup blanch Persim-mons long, soft varieties 12-15** or fully ripe fruit of round drier varieties. Peel and slice using stainless steel knife. Use fully ripe, -No treatment fresh pineapples. 24-36 necessary Wash, peel and Pineapple remove thorny eyes. Slice lengthwise and remove core. Cut in 1/2-inch slices, crosswise. Leave whole or if -Sun drying: (whole Plums sulfuring, halve 1 dip in boiling water 24-36** (Prunes) the fruit. 30 seconds or more to check skins. -Oven or dehydrator drying: rinse in hot tap water.

#### DRYER

## DYNAMOMETERS Recommended Kind for Given Engine Speed and Output

	Standard Measuring Range			
Kind of Dynamometers				
	RPM	Output (PS)		
Prony Brake	less than 1,000	less than 10		
Hydraulic Dynamo	less than 2,500	less than 2,000		
Fan dynamo	less than 2,000	less than 200		
Electric Dynamo	750 - 4,000	less than 30,000		
Torsional dynamo	1,000 - 2,000	less than 50,000		

## ELECTRIC MOTOR Full Load Efficiency Range

		3-phase 4-pole
Horsepower	NEMA Design B Standard, 3-phase	Energy Efficient
	Induction Motor	Motor
1	68-78	80-84
1.5	68-80	81-84
2	72-81	81-84
3	74-83	8388.5
5	78-85	85-88.5
7.5	80-87	86-90.5
10	81-88	87.5-90.5
15	83-89	89.5-91.5
20	84-89	90-93
25	85-90	91-93
30	86-90.5	91-93
40	87-91.5	91.5-93
50	88-92	91.5-94
60	88.5-92	91-94
75	89.5-92.5	92-95
100	90-93	93-95
125	90.5-93	93-95
150	91 - 93.5	93-96
200	91.5 - 94	94-95
250	91.5 - 94.5	

### ELECTRIC MOTOR Wire and Fuse Sizes (Single-Phase Induction Motors Full-Load Currents) 220 Volt

	Approx. Full-Load Current	Extension-	Branch-	Approx. Rating
		Cable Wire	Circuit Fuse	Overload
Motor, hp		Size	Size	Protection
1/6	1.6	16	15	1.8
1/4	2.3	16	15	2.6
1/2	3.7	14	15	4.3
3/4	5.1	12	15	5.9
1	6.5	12	20	7.5
1 1/2	9.2	10	30	10.6
2	12.0	10	40	13.8
3	17.0	8	50	19.6
5	28.0	6	60	33.4

## **ELECTRIFICATION** Load Requirement for Farm Building

Building	Electric items	Min. value watts	Design value*
Farm shop	General lighting, bench grinder, drill air compressor, trouble lamp, portable saw; optional: welder, soldering iron, battery charger	4, 600	3 watts/sq. ft floor area plus 3,300 watts if no welder but plus 7,000 watts if welder will be selected
Poultry brooding	Electric brooder, general lighting, service lighting; optional: ventilation fan, automatic feeder, water warmer	1, 150	4 watts per chick if small flock, 3 watts per chick if large (1000 or more) flock, 4 watts for chick for any size flock with infrared brooders
Poultry laying	Artificial lighting, feed-room lights, egg-room lights, egg cooler; optional: egg candler, vent fan, exhaust fan for egg- room, debiller, automatic feeder, water warmer, washer, grader	2, 300	5 watts per bird plus 1,320 watts/hp of automatic feeder
Dairy barn	Vacuum pump, lighting, vent fan, convenience outlets; optional: pail heater, dehorner, gutter cleaner, clippers	3, 450	200 watts per cow for first 20 cows and 60 watts per cow for those in excess of 20, plus 1,320 watts/hp of gutter cleaner
Milking room (parlor)	Vacuum pump, (pipeline), lighting, vent fan, convenience outlets	2,300	900 watts per stall
Milk house	Lighting, milk cooler, water heater lamps, vent fan; optional: electric hoists	4, 600	250 watts per cow for first 20 cows and 100 watts per cow for those in excess of 20
General-purpose barn	Lighting, convenience outlets, hammer mill, mixer, elevator conveyor equipment; optional: hay drier fan, vent fan, heat lamps, clippers, deicers	3, 450	30 watts/sq. ft outside dimensions plus 1,320 watts/hp each motor
Pig farrowing Residence	Heat lamps, service lighting Lights and appliances	2, 300 4, 000 without range, 12, 000 with range	500 watts per pen 14 watts/sq. ft outside dimensions

* Add 1,320 watts/hp for each motor not listed in the "Electrical items" column.

# **ELECTRIFICATION Copper Wire Properties**

Wire size,	Current-carrying, amp	Area cir.	Weight of	Resistance	Current-
AWG	(2 or 3 wires in cable	mils	bare wire,	ohms/1,000	carrying
	or raceway)		1b/1,000  ft	ft, 20 °C	capacity, amp
	01 1 ac c a y y		10, 1, 000 10	11, 20 C	(single wire in
					open air)
14	15	4,107	12.43	2.58	20.0
12	30	6,530	17.77	1.62	25.0
10	30	10, 380	31.43	1.02	40.0
8	40	16, 510	49.98	0.641	55.0
6	55	26, 250	79.46	0.410	80.0
4	70	41, 740	126.4	0.259	105.0
3	80	52, 640	159.3	0.205	120.0
2	95	66, 370	200.9	0.162	140.0
1	110	83, 690	253.3	0.129	165.0
0	125	105, 500	319.5	0.102	195.0
00	145	133, 100	402.8	0.081	225.0
000	165	167, 800	507.9	0.064	260.0
0000	195	211, 600	640.5	0.051	300.0
Wire	215	250,000	772.0	0.043	340.0
Size =	240	300, 000	926.0	0.036	375.0
Area,	260	350, 000	-	0.031	420.0
Cir	280	400,000	-	0.027	455.0
Mils	320	500,000	-	0.022	515.0

*For types T, R, TW, and RW insulations.

Area	Illumination
	(foot-candles)
Machine shop	
General	10 - 15
Close work	30 - 40
Hay and grain storage	2
General storage	3 - 5
Stairways	5
General work areas	9 - 11
Vegetable grading and packing	30
Tobacco grading	100
Service-drive alleys	4 - 5
Service-walk alleys	9 - 11
Milk house	30 - 40
Milking area	20 - 25
Pump house	5
Laundry area	40
Yard lighting	1 - 5
Animal-bedding area	2
Poultry-laying lights	3 - 4
Animal-feeding areas	3 - 5
Feeding grinding	10
General illumination in residence	5 - 7
Laundry	10
Reading area	30
Seed cleaning and separating	20
Egg handling	10
Clod-storage room	5
Attic, storage	4 - 5
Cellar, storage	4 - 5
Kitchen (general)	10
Work, range, sink	40
Loading platform	3 - 5

# **ELECTRIFICATION** Suggested Illumination for Farmstead Areas

#### ELECTRIFICATION Fluorescent Lamps* - Preheat Starting: Lumen Ratings for Lamps

	Tube length,	Rated lumens			
Watts	in.	3500° white	Daylight	Soft white	2500° white
6	9	210	186	-	198
8	12	330	295	-	310
13	21	585	520	-	545
14	15	490	435	380	460
15	18	615	585	480	600
20	24	920	800	700	860
30	36	1,470	1,350	1,170	1,380
40	48	2,300	1,920	1,720	2,100
100	60	4,200	3,900	3,300	4,000

*Average values.

#### **ELECTRIFICATION Incandescent Lamps:* Lumen Ratings for Lamps**

Watts	Initial lumens	Lumens at 70% rated	Rated average laboratory
		life	life, hr
6	40	-	1,500
10	79	72	1,500
15	140	121	1,200
25	260	217	1,000
40	468	428	1,000
50	660	625	1,000
60	828	786	1,000
75	1,110	987	750
100	1,620	1,530	750
150	2,580	2,340	750
200	3,640	3,240	750
300	5,820	5,160	750

*Inside-frosted bulb.

# **ELECTRIFICATION Types of Conductor Insulation**

Trade Name	Type Letter	Where used	
Code rubber	R	General use	
Heat-resistant rubber	RH	General use	
Moisture-resistant rubber	RW	General use and wet locations	
Thermoplastic	Т	General use	
Moisture-resistant	TW	General use and wet locations	
thermoplastic			
Weatherproof	WP	Wet locations; inside open wiring by special	
		permission	
Underground cable	UF	Suitable for direct burial in the earth and	
		general use	
Range cable	SR, SRT	Rubber or neoprene or thermoplastic cover;	
		suitable for damp places	
Service-entrance cable	ASE, SE, USE	Used as service-entrance conductors, range,	
		clothes drier, and some water heaters	
Mineral insulation	MI	General use and wet locations	

Material	Resistivity at 68°F, ohms/cir mil-ft
Silver	9.8
Annealed copper	10.4
Hard-drawn copper	10.8
Annealed aluminum	17.0
Hard-drawn aluminum	17.5
Tungsten (annealed)	26.3
Zinc	33.2
High brass	50.0
Pure iron	60.0
Steel wire	64 - 106
Manganin	290.0
Constantan	300.0
Cast iron	450 - 600
Nichrome	675.0

## **ELECTRIFICATION Resistance Properties of Certain Metals and Alloys**

ENERGY Conversion Factors				
Source	Amount	Equivalent		
Electricity	600 kwh	1.000 BOE		
Gasoline	1000 li	6.182 BOE		
Kerosene	1000 li	6.449 BOE		
Diesel Oil	1000 li	6.717 BOE		
Fuel Oil	1000 li	7.027 BOE		
Av Turbo	1000 li	6.742 BOE		
L P G	1000 kg	8.439 BOE		
Coal	1000 kg	3.047 BOE		
Wood*	1 MT	1.626 BOE		
Charcoal**	1 MT	4.283 BOE		
Bagasse*	1 MT	1.701 BOE		
Biogas	1000 cu.m.	1.213 BOE		

* Assumed 50% moisture ** Assumed 10% moisture

#### **ENGINE Brand and Made**

Engine	Made
ACME Engines	ACME Motori S.PA 31049 Valdobbiadene, Travisoo, Italy
Honda Engines	Honda Motor, Co. Ltd. Tokyo, Japan
Kohler Engines	Kohler Co. Koohler, Wisconsin, 53044 USA
Kubota Engines	Kubota, Ltd 2-47 Shikitsuhigashi 1- chome, Nanuaku, Osaka, Japan
MAG Kerosene	Motosacoche SA, Geneva, Switzerland
Engine	
Mitsubishi Katsura	Mitsubishi Heavy Ind., Ltd Taiwan, Republic of China
Diesel Engine	
Robin Engines	Fuji Heavy Industries LTd. Engine and Machinery Division, Subam Building 1-7-2 Nistru-
	Shinjuku-ku
	Tokyo 160 Japan
Yanmar-Yeh Hsing	Yanmar Group Yeh Shing Industrial Machinery Co., Ltd. No. 106 1-sec, Chung Hsiao, W.
Diesel Engine	Road, Taipei
Ducati Air Cooled	Ducati Meccanica S.P.A. VIA A.C. Ducati, 3 Borgo Panigele – 40100, Italy
Diesel Engine	

# **ENGINE** Specifications

Brand	ACME	Ducati	Honda	Robin
Model	AON 48W	IS 7	GX 160	EY 15 D
Туре	4-stroke vertical air cooled diesel	4-cycle vertical air cooled	4-cycle air cooled, gasoline horizontal shaft	Air cooled, 4 cycle gasoline, horizontal, PTO shaft
Bore x Stroke	85 mm x 85 mm	75 mm x 78 mm	68 mm x 45 mm	63 mm x 46 mm
Displacement	482 cc	345 cc	163 cc	143 cc
Output Power	11.3 hp/3000 rpm	7.5 hp / 3200 rpm	5.3 hp/3600 rpm	3.5 hp/4000 rpm
Maximum torque	2.52 kg-m/2058 rpm		1.1 kg-m/2500 rpm	0.68 kg-m/2800 rpm
Ignition system	Direct injection		Transistor	
Maximum fuel consumption	2.66 li/hr	193gts/hp-hr	240 g/hp-hr	
Dry Weight	55 kg	48 kg	14 kg	13.2 kg

ENGINE		
Classification by Crankshaft Speed		

Classification	Low Speed	Middle Speed	High Speed
Ignition system			
Electric spark plug	Less than 800 r.p.m.	800 – 2,500 r.p.m.	more than 2,500 r.p.m.
Injection	Less than 700 r.p.m.	700 – 1,000 r.p.m.	more than 1,000 r.p.m.
		_	_

#### ENGINE

#### Relationship Between Color of Exhaust Gas and Suitability of Mixing Ratio of Fuel and Air

Color of Exhaust Gas	Mixing Ratio of Fuel and Air				
Colorless	optimum				
Black	fuel excessive				
Light Yellow	air excessive				
Gray	fuel and lubricating oil excessive				
Light Sky Blue	lubricating oil excessive				

#### **ENGINE** Fuel Specific Gravity

Fuel	Specific Gravity
gasoline	0.67 - 0.76
kerosene	0.78 - 0.85
light oil	0.81 - 0.83
heavy oil	0.85 - 0.91

#### **ENGINE** Lubrication Oil and Viscosities

	Ra	Range of viscosity; Saybolt universal (seconds)						
SAE No.	(	$0^{0}$ F	210	$0^{0}$ F				
	min.	max.	min.	max.				
5W	-	4000	-	-				
10W	6000(a)	12000	-	-				
20W	12000(b)	48000	-	-				
20	-	-	45	58				
30	-	-	58	70				
40	-	-	70	85				
50	-	-	85	110				

#### **ENGINE** Firing Orders (4 Stroke Cycle)

No. of Cylinder	Order of Firing					
	$O \Delta$					
2	No. 1 – No. 2					
	Ο Ο Δ					
3	No. 1 – No. 2 – No. 3					
	Ο Ο Δ Δ					
4	No. 1 – No. 2 – No. 4 – No. 3					
	$O O O \Delta \Delta \Delta$					
6	No. 1 – No. 5 – No. 3 – No. 6 – No. 2 – No. 4					

ENGINE Ignition Systems						
Contact or Non Contact Power Source	Contact System	Non- Contact System				
Magnet	contact type magnet	Transistor magnet Capacitor discharge ignition magnet				
Battery	contact-type distributor	Transistor ignition				

#### ENGINE Governor

Engine		JIS No.	Instantaneous	Stabilizing
Kind	Size & Use		Performance	Performance
Kerosene,	small size for	JIS B 8010	less than 20%	less then 10%
Diesel	land use		15%	8%
Diesel	small size for	JIS F 4303	less than 12%	-
	boat			

#### **ENGINE** Calorific Value of Fuel

Kind of fuel	Calorific Value
	(Kcal/kg)
Gasoline	10,500 - 11,000
Kerosene	10,500
Light oil	10,500
Heavy oil	10,500
Benzol	9,600
Methyl alcohol	4,830
Ethyl alcohol	6,720
Natural gas	8,000 - 13,000

Thermal Efficiency & Losses									
Kind of	Kerc	osene		Diesel E	Gas E	Hot bulb E			
Engine	Low speed	Middle speed	Gasoline E (small size)	(4 cycle)	Gas E	(2 cycle)			
r.p.m.	400- 900	1000- 1500	1300-1800	500-1000	100-500	300-350			
Indicated therm. eff.	25-27	19-24	26-29	39-41	34-40	28-37			
Effectiv therm. eff.	17-22	16-20	21-23	29-33	25-36	18-27			
Cooling loss	40-39	41-40	37-34	25-24	35-23	18-23			
Deliveryy loss	33-32	30-31	33-31	39-34	35-37	56-40			
Mechanical loss	10-7	13-9	9-12	7-9	5-7	8-10			

# ENGINE Thermal Efficiency & Losses

# **ENGINE Fuel Consumption Ratio**

Kind of Engine	Fuel	Fuel Consumption Ratio (g/ps/hr)
Kerosene (middle speed)	light oil	300 - 390
Gasoline	gasoline	200 - 350
Diesel (4 cycle)	heavy oil	180 - 220
Hot bulb (2 cycle))	heavy oil	260 - 310
Gas E	gas	2,300 - 2,800

		-			Ŭ			0	
Brand	Make	Туре	Rated Engine Speed (rpm)	Horse power (hp)	Bore x stroke (mm)	CR	Max. power output indicated rpm (kw/rpm)	Max. torque at indicated rpm (kg- m/rpm)	Specific fuel consumption (g/kw-hr)
ACME Diesel Engine	Italy	4-stroke vertical, 1 cylinder, diesel engine	3000	11.3	85 x 85	19:1	7.35/3009	2.52/2058	282.2
ACME Gasoline Engine	Italy	4-stroke, vertical, overhead, 1-cylinder, gasoline engine	3600	11.0	80 x 65	7:1	6.39/3315	2.09/2247	354.1
CIXI Diesel Engine	China	4-stroke, horizontal, 1-cylinder, diesel engine	2600	5.0	75 x 75	-	3.34/2324	1.5/2001	360.0
HONDA Diesel Engine	Japan	4-stroke, overhead, 1-cylinder, diesel engine	3600	6.0	76 x 70	19:1	5.01/3461	1.643/2591	292.1
HONDA Gasoline Engine	Japan	4-stroke, diagonal, 1- cylinder, gasoline engine	3600	8.0	-	-	5.11/3303	1.59/2979	383.5

# **ENGINE** Specifications of Locally Available Engines

		-			v			0	
Brand	Make	Туре	Rated Engine Speed (rpm)	Horse power (hp)	Bore x stroke (mm)	CR	Max. power output indicated rpm (kw/rpm)	Max. torque at indicated rpm (kg- m/rpm)	Specific fuel consumption (g/kw-hr)
Katsura Mitsubishi Diesel Engine	Tai- wan, China	4-stroke, horizontal, 1-cylinder diesel engine	2200	5.5	68 x 80	-	5.03/2373	1.96/1276	367.3
MAG Kerosene Engine	Swit- zer- land	4-stroke, horizontal, 1-cylinder kerosene engine	3800	7.0	74 x 60	-	3.0/3562	1.01/2524	753.4
Mitsubishi Diesel Engine	Thai- land	4-stroke, horizontal, 1-cylinder, diesel engine	2400	7.0	76 x 78	18:1	4.69/2230	2.14/1297	241.9
Mitsubishi Shakti Engine	India	4-stroke, horizontal, 1-cylinder, diesel engine	2200	9.0	90 x 95	21:1	6.46/2173	3.031/2053	231.2
RUGGER INI Motor	Italy	4-stroke, horizontal, 1-cylinder, diesel engine	3000	11.0	-	-	7.27/2873	2.50/2460	284.9

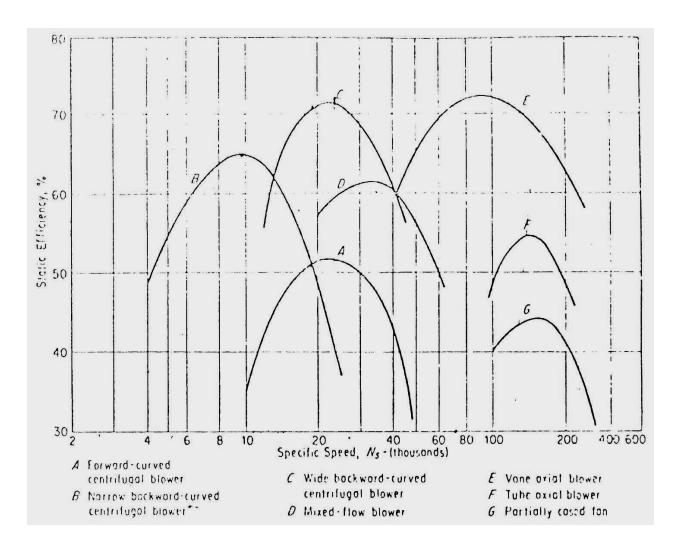
# **ENGINE** Specifications of Locally Available Engines

		-			•			0	
Brand	Make	Туре	Rated Engine Speed (rpm)	Horse power (hp)	Bore x stroke (mm)	CR	Max. power output indicated rpm (kw/rpm)	Max. torque at indicated rpm (kg- m/rpm)	Specific fuel consumption (g/kw-hr)
Shakti Diesel Engine	India	4-stroke, horizontal, 1-cylinder, diesel engine	3000	10.0	80 x 90	20:1	5.09/1559	4.20/1172	369.3
Shuangniao Diesel Engine	China	4-stroke, horizontal, 1-cylinder, diesel engine	2000	4.0	70 x 75	-	3.39/2204	1.5/2204	297.4
TARO Diesel Engine	China	4-stroke, horizontal, 1-cylinder, diesel engine	2400	8.0	80 x 75	-	5.33/2179	2.529/1937	387.6
Tsinkiang Diesel Engine	China	4-stroke, horizontal, 1-cylinder, diesel engine	2600	6.0	75 x 75	-	4.09/2498	3.91	313.1
Wisconsin Gasoline Engine	United Stated of Ameri ca	4-stroke, horizontal, 1-cylinder gasoline engine	3600	14.1	95 x 76	-	9.16/3310	2.95/2306	410.4

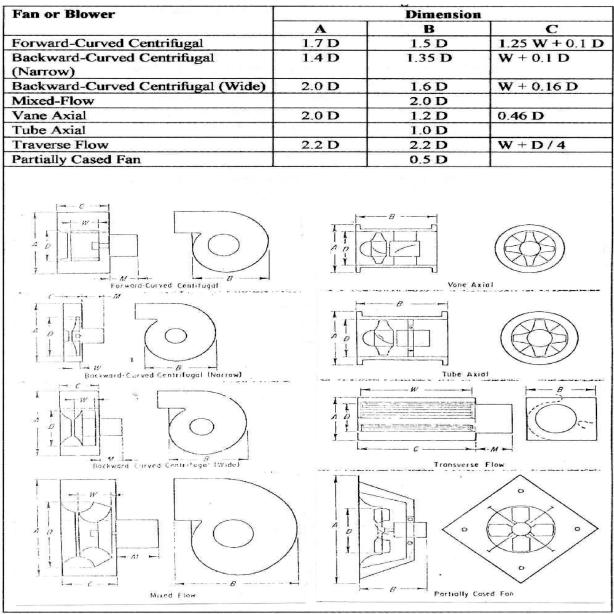
# **ENGINE** Specifications of Locally Available Engines

#### **ENGINE OIL API Service Classification for Diesel Engine**

Classification	Definition
CA	Light-duty diesel engine service
	Service typical of diesel engines operated in mid to moderate duty quality
	fuels.
CB	Moderate-duty diesel engine service
	Service typical of diesel engines operated in mild to moderate duty with lower
	quality fuel which necessitate more protection from wear and deposits.
CC	Moderate-duty diesel and gasoline engine service
	Service typical lightly supercharged diesel engines operated in moderate to
	severe duty.
CD	Severe-duty diesel engine service
	Service typical of supercharged diesel engines in high-speed, high-output
	duty requiring highly effective control of wear and deposit.


#### FAN Comparisons of Backward and Forward Curved Fans

Backward Curve	Forward Curve
More expensive	Have lower noise level
Have no overloading characteristics	Have overloading characteristics
Operates against high pressure (0-30 cm	Normally operate in low pressure range (0-15
water)	cm water)
Have no unstable region of operation	Have one unstable operating region
Sturdy construction and easy to install	Usually of light construction


Air Moving Unit	Specific Speed	Typical Pressure	Typical flow
U		Coefficient $(\Psi)$	Coefficient ( $\phi$ )
Forward Curve	13000	1.00	0.150
Centrifugal	20000	2.00	0.500
	40000	1.00	0.750
Backward-Curved	4000	1.40	0.002
Centrifugal	8000	1.00	0.010
(narrow)	20000	0.80	0.100
Backward-Curved	15000	1.00	0.080
Centrifugal	30000	0.75	0.300
(wide)	45000	0.50	0.500
Mixed Flow	20000	1.00	0.200
	30000	0.75	0.300
	60000	0.50	0.800
Vane Axial	50000	0.70	0.400
	80000	0.40	0.250
	200000	0.20	0.200
Tube Axial	100000	0.30	0.400
	150000	0.20	0.300
	200000	0.10	0.100
Partially Case Fan	100000	0.30	0.400
	150000	0.20	0.300
	300000	0.05	0.100

FAN Typical Pressure and Flow Coefficient

FAN Static Efficiency of Various Fan Types



FAN
<b>Casing Dimension</b>



*D & W are the diameter and width of fan or blower.

Machine	Capacity	Power Requirement	Fuel Consumption
			Rate
Power Tiller	1 to 1.5 ha/day	4-6 hp diesel	0.61 liter/hr diesel
IRRI PT-3		5-8 hp gasoline	0.86 liter/hr gasoline
Power Tiller IRRI	0.6 ha/day plowing	5 hp gasoline	1.1 liters/hr
PT-5	0.9 ha/day harrowing		
	2.5 ha/day reaping		
. Hydro Tiller IRRI	1.8 ha/day first pass	10 hp gasoline	1.5 li/hr gasoline
HT-1	2 hac/day second pss	6.5-9 hp diesel	1.0 li/hr diesel
Cono Puddler	1.5 ha/day		1.6 li/hr
Mounted on power			
tiller			
Cono Puddler	1 ha/day	1 draft animal	
Animal drawn			
IITA-IRRI Rolling	16,000 hills/hr	1 person	
<b>Injection Planter</b>			
IRRI TR 6-Row	0.3-0.4 ha/day	1 person	
<b>Rice Transplanter</b>			
IRRI Drum Seeder	1 ha/day	14 man hrs/ha	

Machine	Capacity	Power Requirement	Fuel Consumption
			Rate
IRRI Watt-Miser	1-3 ha	0.5-1.5 hp electric	
Electric Pump		motor	
MA-IRRI "Tapak-	3 li/sec for a 2-m lift	1 person	
Tapak" Pump	2 li/sec for a 4-m lift		
IRRI "Sipa" Pump			
100 mm	1200-1500 li/min	4-5 hp gasoline	
		3-4 hp diesel	
150 mm	2000-3000 li/min	5-7 hp gasoline	
		4-6 hp diesel	
190 mm	3500-5000 li/min	7-10 hp gasoline	
		6-8 hp diesel	
250 mm	5500-7000 li/min	10-14 hp gasoline	
		9-12 hp diesel	

Machine	Capacity	Power Requirement	Fuel Consumption Rate
IRRI Axial Flow Pump	3000 li/min	5 hp gasoline or diesel 3 hp electric motor	1.2 li/hr gasoline
IRRI Diaphragm Pump	190 li/min @ 1-m head 120 li/min @ 2-m head	1 man	
Push-Type Single Row Cono Weeder	0.18 ha/day	40-50 man-hr/ha	
Push-Type Two Row Cono Weeder	0.26 ha/day	25-35 man-hr/ha	
Push-Type Hand Weeder		35-75 man-hr/ha	
IRRI Plunger- Auger Fertilizer Injector	0.5 ha/day	16 man-hr/ha	
IRRI RE2-1.0 m Reaper	2.4 ha/day	5 hp gasoline	1 li/hr
CAAMS-IRRI 1.0m Reaper	2.4 ha/day	3 hp gasoline	1 li/hr
IRRI TH-6 Portable Thresher	600 kg/hr	5 hp engine	1 li/hr
IRRI TH-7 Axial Flow Thresher	400-500 kg/hr	7 hp engine	

Machine	Capacity	Power Requirement	Fuel Consumption
			Rate
IRRI TH12 Axial	1000-1500 kg/hr	12 hp gasoline	
Flow		10 hp diesel	
Thresher/Sheller			
AMDP Two Drum	1.0-1.2 tons/hr	5 hp gasoline or diesel	
Corn Sheller model			
CS2-1000 w/			
Aspirating Cleaner			
Hand-Operated	300-400 kg/day	1 person	
Corn Sheller			
IRRI GC-7 Portable	1000 kg/hr	0.50 hp electric motor	
Grain Cleaner	_	1.0 hp gasoline	
			0.5 li/hr
IRRI DR-1 Batch		2 hp electric motor	
Dryer		3 hp gasoline	0.75 li/hr gasoline
UPLB Flatbed		3 hp electric motor	
Dryer		5 hp gasoline	

Machine	Capacity	Power Requirement	Fuel Consumption
			Rate
IRRI Micromill	50 kg of paddy per hr	1 hp electric motor	1 kw-hr/hr
		3 hp gasoline	0.5 li/hr gaoline
UPLB Improved	300 kg of paddy per		
Village Rice Mill	hr		
IRRI 4-Row	0.20-0.25 ha/day	1 person	
Ultralite			
Transplanter			
AMDP-FMRC Rice	0.45-0.55 ha/day	2 persons	
Transplanter			
BPI Cassava	300 kg/hr	1 person	
Chipping Machine	1300 kg	1-3 hp motor or engine	

#### FARM EQUIPMENT Dimension of Philippine, Thai and IRRI Plow

Types of	Length of	Height of	Radius of Curvature	Cutting	Share Angle	Inverting
Plow	Moldboard	Mold-board	of Moldboard	Angle of		Angle
	L	Н	(cm)	Plow		-
	(cm)	(cm)				
Philippine	22.50	18.50	25.03	10.00	7.65	50.00
Thai	14.50	18.00	26.00	25.00	18.00	42.00
improved						
IRRI	17.50	21.50	19.93	20.00	17.74	35.00

	I ower Thier and Engine renormance						
	Spiral Plow	Two Bottom	Moldboard	Spiral and	Rotary Tilling		
	1	disc Plow	Plow	Comb Harrow	, , , , , , , , , , , , , , , , , , ,		
Rated Power, KW	6.7-9.0	3.0-9.0	5.2-7.5	9	7.5		
Rated Speed, rpm	3200-3600	1800-3600	3000-3600	3600	3600		
Axial Load, kg	55.8-92.2	25.21111.2	74.683.3		18.2-21.6		
Axial Torque, kg-m	41.4-68.1	118.598	53.4-59.6		13.2-15.7		
Axial Power, KW	2.5-5.19	1.15-6.10	3.923.78		1.88-4.65		
Fuel Consumption li/hr	1.4-4.67	.97-5.8	2.22-2.48		1.45-2.65		
Spec. fuel consumption, gm/kW-hr	269-941	269-844	470-580		417-770		
Transmission Efficiency, %		77.5-87.6			80-81.7		

# FARM EQUIPMENT Power Tiller and Engine Performance

	Spiral Plow	Two Bottom	Mold-board	Spiral and	Rotary Tilling
		Disc Plow	Plow	Comb Harrow	
Travelling	1.02-2.70	2.45-4.9	3.44-4.10	1.49	1.69-2.94
Speed, kph					
Average	86-110	79-935	96-130	111	51-76
depth of					
Tillage, mm					
Average	1020-1250	305-579	234-287	1033	701-1005
width of					
tillage, mm					
Actual field	.108205	.094198	.049085	.127	.106268
capacity,					
ha/hr					
Theoretical	.204220	.101220	.055105	.178	.148310
field					
capacity,					
ha/hr					
Plowing	53.6-93.2	53.7-97	80.3-90.3	70.2	71.6-88.4
efficiency,					
%5					
Fuel	.66-31.6	.64-4.27	.62-2.10	3.97	2.22-2.5
Consumption					
, li/hr					
Noise level,	86-96	82-103	81-92	101	88-95
db (A)					

# FARM EQUIPMENT Power Tiller Field Performance

#### FARM EQUIPMENT Fertilizer Applicator Metering Device Performance Positive Metering Device for Granulated Crystalline Fertilizer

Metering Device	Suitability for Low and High Application Rates	Fertilizer rate Control	Ease of Cleaning	Relative Cost	Ease of Manufacture	Remarks
Vertical rotor with cells on the periphery	Very good	Difficult	Difficult as individua l cells have to be cleaned	Moderate	Precision manufacturing difficult	Low inter-row variation Sensitive to topography of field
Revolving- bottom type	Good	Difficult	Difficult	High	Difficult	Particularly suited to row crop planters and high application rates
Star wheel	Very good	Difficult	Difficult	High	Difficult	Suitable for seed cum- fertilizer drills
Fluted roller	Very good	Easy	Flushing with water required after use	Moderate	Easy	Efficient operation when material is dry

#### FEED MILL Specifications of Hammer Mill

Rotor Diameter, mm	1080	1080	560	560
Width of Crashing	400	300	400	300
Chamber, mm				
Main shaft Speed, rpm	1480	1480	2950	2940
Peripheral Velocity, m/s	84	84	86	286
Power, kw	90-110	55-15	30-37	22
Capacity, tph	15-18	9-12	5-6	3.5

# FEED MILL Energy Requirement for Feed Grinding (kW-hr/ton)

Сгор	Hammer Mill	Burr Mill
Shelled Corn	7.4	3 - 5.8
Oats	11.5	5-14
Barley	9	4 - 10
Ear Corn	6	-
Нау	8	-

#### FEED MILL

## By-Product and Percentage Composition of Various Agricultural Crops

Crop	By-Product	By-product feed as % original by weight
Castor	Castor Meal	50
Cocoa Bean	Cocoa shell meal	11
Coconut	Coconut meal	34 - 42
Cotton	Cottonseed meal	47
Maize	Corn bran	10
	Corn germ meal	19
Oil palm	Sludge (dried)	3
	Palm kernel meal	22
Peanut (unshelled)	Croundnut meal	43
Rice	Rice bran	10
	Broken rice	4
Rubber seeds	Rubber seed meal	50
Sago (trunks)	Coarse sawdust	60
	Crude wet sago	40
	Unrefined sago flour	21
	Sago refuse	19
Sesame	Sesame meal	80
Soya bean	Soya bean	78
Sugar Cane	Green tops	7
	Molasses	3
Sorghum	straw	-
Sweet potato	haulm	-
	Unsaleable tubers	-

#### FEED MILL Specific Energy and Relative Energy Efficiency for Various Hammer Mill Hammer Thickness

Hammer Thickness	Specific Energy	Relative Energy Efficiency
(mm)	(kW-hr/ton)	(%)
8.00	9.5	117
6.35	8.1	100
3.18	6.5	80
1.59	5.5	69

#### **FEED MILL**

#### Specific Energy Consumption (kW-hr/ton) for Grinding Corn with Different Hammer Thickness

Hammer Thickness	Hammer Tip Speed				
(mm)	(m/s)				
	54 71 86				
6.35	4.6	6.5	12.9		
3.18	3.7	5.6	11.0		
1.59	3.9	4.8	7.6		

#### FEED MILL Mixing Time of Various Feed Mixers

Feed Mixer	Mixing Time (min)
Horizontal – Type with	5 - 10
Helical Screw	
Vertical-Type with Screw	10 - 15

# FEED MILL Nutrient Standards for Swine Feeds

Kinds of Feeds	Crude Protein % NLT	Crude Fiber % NMT	Crude Fat % NMT	Moisture % NMT	Ash % NMT	Mineral % NMT
Hog Pre-Starter mash/Crumble/ Pellet	22	5	4	13	To be supplied by the feed	If more than 5% the maximum
Hog Starter Mash/Crumble/ Pellet	18	8	4	13	manufacturer	percentage of calcium (Ca) or
Hog Grower Mash/Crumble/ Pellet	16	10	4	13		phosphorous (P) shall be indicated
Hog Breeder Mash/Crumble/ Pellet	14	12	4	13		
Hog Lactating Mash/Crumble/ Pellet	15	10	4	13		
Hog Fattener Finisher Mash/Crumble/ Pellet	13	10	4	13		

Legend: NLT - Not less than NMT - Not more than

	Nutri	F ients Stai	'EED M ndards f		ry Feeds	
Kinds of Feeds	Crude Protein % NLT	Crude Fiber % NMT	Crude Fat % NLT	Moisture % NMT	Ash % NMT	Mineral % NMT
For Broilers (meat	-type chicke	ens)			To be supplied	If more than
Broiler Starter mash/Crumble/P ellet	21	8	4	13	by the feed manufacturer	5% maximum percentage of calcium (Ca)
Broiler Finisher Mash/Crumble/ Pellet	18	9	4	13		or phosphorous (P) shall be
For Egg-type Chic	kens	I		1		indicated
Chicks Starter Mash/Crumble/ Pellet*	19	8	4	13		
Chicken Grower Mash/Crumble/ Pellet	16	10	4	13	-	
Chicken Layer mash/Crumble/P ellet No. 1	18	10	4	13		
Chicken Layer Mash/Crumble/ Pellet No. 2	16	10	4	13		

Legend: NLT - Not less than: NMT - Not more than

	Nutri	ents Sta	ndards f	for Poult	ry Feeds	
Kinds of Feeds	Crude Protein % NLT	Crude Fiber % NMT	Crude Fat % NLT	Moisture % NMT	Ash % NMT	Mineral % NMT
For Pigeons			1	-	To be supplied	If more than 5%
Pigeon Feeds Pellet	18	10	4	13	by the feed manufacturer	maximum percentage of
For Turkeys						calcium (Ca) or
Turkey Starter Mash/Crumble/ Pellet	28	8	4	13		phosphorous (P) shall be indicated
Turkey Grower Mash/Crumble/ Pellet No. 1	20	10	4	13		
Turkey Grower Mash/Crumble/ Pellet No. 2	16	10	4	13		
For Ducks		•		•		
Duck Starter Mash/Crumble/ Pellet	19	10	4	13		
Duck Grower Mash/Crumble/ Pellet	16	10	4	13		
Duck Layer Breeder Mash/Crumble/ Pellet	16	10	4	13		
Duck Finisher Mash/Crumble/ Pellet	16	10	4	13		

**FEED MILL** 

# Legend: NLT - Not less than NMT - Not more than

FISH Storage Data								
Siviage Data								
Product	Storage temperature °C	Relative humidity %	Storage life					
Cod, fresh	+0.5 to +2	85 to 95	6 to 12 days					
Cod, frozen	-20 to -28		6 to 10 months					
Haddock, fresh	+0.5 to +2	85 to 95	6 to 12 days					
Haddock, frozen	-20 to -28		9 to 12 months					
Halibut, fresh	+0.5 to +2	85 to 90	6 to 10 days					
Halibut, frozen	-20 to -28	-	6 to 10 months					
Herring, fresh	+0.5 to +2	85 to 90	6 to 10 days					
Herring, smoked	+4.5 to 10	50 to 60	3 to 4 months					
Herring, frozen	-20 to -28		6 to 10 months					
Mackerel, fresh	+0.5 to +2	85 to 90	6 to 9 days					
Mackerel, frozen	-220 to -28		3 to 6 months					
Shellfish, fresh	-1 to 0.5	85 to 95	3 to 7 days					
Shellfish, frozen	-20 to -30	90 to 95	3 to 6 months					
Tuna, fresh	+0.5 to +2	85 to 95	6 to 12 days					
Tuna, frozen	-20 to -28		9 to 12 months					

Thermal Properties							
Product	Freezing	Specific heat	Specific heat	Latent heat			
	temperature	above freezing	below freezing	kJ/kg			
	°C	kJ/kg °C	kJ/kg °C				
Cod, fresh	-2	3.63		260			
Cod, frozen			1.82				
Haddock, fresh	-2	3.64		260			
Haddock, frozen			1.82				
Halibut, fresh	-2	3.56		260			
Halibut, frozen			1.8				
Herring, fresh	2.3			215			
Herring, smoked	-2	2.93		213			
Herring, frozen			1.65				
Mackerel, fresh	-2	3.1		190			
Mackerel, frozen		1.56					
Shellfish, fresh	-2	3.62		277			
Shellfish, frozen			1.88				
Tuna, fresh	-2	3.44		235			
Tuna, frozen			1.7				

# FLUID Properties

Fluid	Density kg/m ^{3†}		Melting point	Boiling point	Specific heat capacity	Thermal conductivity	Dynamic viscosity
	Liqui d	Gas	°C‡	°C‡	kJ/kg K§	W/m K§	MPa s¶
Air	-	1.2	-	-	1.02	0.25	0.018
Ammonia	-	0.77	-78	-33	2.12	0.023	0.010
Benzene	880	-	5.5	80	1.45	0.16	0.65
Butane	600	2.70	-138	-0.5	1.68	0.015	0.007
Carbon dioxide	-	1.98	-56	-78	0.85	0.016	0.015
Carbon monoxide	-	1.25	-199	-191	1.05	0.029	0.017
Carbon tetrachloride	1600	-	-23	76	0.86	0.11	0.97
Chlorine	-	3.21	-101	-34	0.48	0.085	0.013
Ethanol	790	-	-117	78	2.45	0.17	1.2
Glycerol	1260	-	20	290	2.42	0.29	1500
Hydrogen	-	0.09	-259	-253	14.3	-	0.009
Hydrogen sulfide	-	1.54	-54	-61	1.0	0.014	0.012
Methane	470	0.72	-182	-164	2.22	0.033	0.011
Methanol	790	-	-94	65	2.52	0.21	0.60
Nitrogen	-	1.25	-210	-196	1.0	0.025	0.017
Oxygen	-	1.43	-218	-183	0.92	0.026	0.020
Propane	500	2.02	-190	-42	1.57	0.017	0.008
R11	1500	5.8	-111	24	0.88	0.090	0.40
R12	1300	6.3	-158	-30	0.69	0.009	0.26
R22	1200	4.7	-160	-41	0.78	0.011	0.23
R113	1550	7.4	-35	48	0.95	0.077	0.68
R114	1450	7.8	-94	4	0.71	0.010	0.38
Water	1000	-	0	100	4.19	0.59	1.00

# FLUID Physical Properties of Fluid

Properties	Gas	Supercritical Fluid	Liquid
Density, g/cm ³	0.006-0.002	0.2-0.9	0.6-1.6
Viscosity, µPa-s	10-30	10-90	200-3000
Diffusion Coefficient, cm ² /s	0.1-0.4	$(0.3-0.7) \ge 10^{-3}$	$(0.2-2.0) \ge 10^{-5}$

#### FRUITS AND VEGETABLES Chilling Injury

Fruits and Vegetables	Approximate Temperatures at which Chilling Starts (°F)
Avocado	40-50
Banana	55
Cucumber	40-43
Lemon	50-53
Mango	40
Lanzones	50-55
Рарауа	43
Pineapple	43
Potato	32
Sweet potato	32
Tomato	45

	2.60	1.100		
Material	MCi	MCf	Tmax	Pretreatment
	(%)	(%)	(°C)	
		- ·		
		<u>Fruits</u>		
Apples	-	24	70	Slicing and sulfuring
Grapes	80	15-20	70	Sulfuring
Bananas	_	15	70	Longitudinal halves
Guavas	-	7	65	Halves, deseed
		Vegetabl		
		es		
Green peas	80	5	65	Blanching
Cauliflower	80	6	65	Slicing
Carrots	70	5	75	Slicing and blanching
Green beans	70	5	75	Blanching
Onion, Garlic	80	4	55	Slicing
Cabbage	80	4	55	Shredding and blanching
Sweet potatoes	75	7	75	Cubes
Potatoes	75	13	-	Cubes
Leafy	80	10	-	-
vegetables				
Chilies	-	10	-	-
Cassava	62	17	-	Cubes

# FRUITS AND VEGETABLES Drying Requirements

### FRUITS AND VEGETABLES Ethylene Production Rate and Ethylene Sensitivity

Common Name	Ethylene Production Rate	Ethylene Sensitivity
Acerola, Barbados cherry	L	М
African horned melon, kiwano	М	Н
Amaranth, pigweed	VL	М
Apple	VH	Н
Apricot	М	Н
Artichoke	VL	L
Asian pear, nashi	Н	Н
Asparagus, green, and white	VL	М
Avocado	Н	Н
Babaco, Mt. Papaya	М	Н
Banana	М	Н
Beans	L	М

# FRUITS AND VEGETABLES Harvesting Indicator

Fruit/Vegetable	
A. Roots, bulbs and tubers	
Radish and carrot	large enough and crispy
White potato, onion	tops begin to dry out and topple down
& garlic	
Ginger	Large enough
Green Onion	Longest
B. Fruit Vegetable	
Cowpea, sitao, snap	Well-filled pods that snap readily
beans, batao, and	
sigarillas	
Lima beans	Well-filled pods that are beginning to lose their greenness
Okra	Full size fruits, the tips can be snap readily
Upo and patola	Immature (overmature if thumbnail can not penetrate flesh
	readily)
Eggplant,	Immature (overmature if color dulls or changes and seeds are
ampalaya	tough
Sweet corn	Exude milky sap when thumbnail penetrate kernel
Tomato	Seed slip when fruit is cut, or green color turns pink
Sweet pepper	Deep green color turning dull or red
Watermelon	Color of lower parts turns creamy yellow, dull hollow sound
	when thumped
C. Flower Vegetables	L
Cauliflower	Crud compact (overmature if flower cluster elongates and
	become loose)
Broccoli	Bud cluster compact (overmature if loose)
D. Leafy Vegetables	
Lettuce, pechay	Big enough but before flowering unless flower are desired
Cabbage	Head compact (overmature if head cracks)
Cubbage	The compact (overmature in head cracks)

# FRUIT AND VEGETABLE Storage Data

Product	Storage temperature °C	Relative humidity	Storage life
		%	
Apples	-1 to +3	90 to 98	1 to 6 months
Apricots	-0.5 to 0	90 to 95	1 to 2 weeks
Artichokes, globe	-0.5 to 0	90 to 95	1 to 2 weeks
Avocado	+7 to +13	85 to 90	2 to 4 weeks
Asparagus	0 to +2	95 to 97	2 to 3 weeks
Bananas	+13 to +15	90 to 95	5 to 10 days
Beans, green	+4 to +7	90 to 95	7 to 10 days
Beetroot	0 to +2	95 to 97	3 to 5 weeks
Blackberries	-0.5 to 0	95 to 97	1 to 3 days
Broccoli	0 to +2	90 to 95	7 to 14 days
Brussels sprouts	0 to +2	90 to 95	3 to 5 weeks
Cabbage	0 to +2	90 to 95	3 to 4 months
Carrots	0 to +21	90 to 95	1 to 2 weeks
Cauliflower	0 to +2	90 to 95	2 to 4 weeks
Celery	0 to +2	90 to 95	2 to 3 months
Cherries	-0.5 to0	90 to 95	2 to 3 weeks
Coconuts	0 to +2	80 to 85	1 to 2 months
Cranberries	+2 to +4	90 to 95	2 to 4 months
Cucumber	+7 to +10	90 to 95	9 to 14 days
Dates, dried	+18 to +20	60 to 75	6 to 12 months
Eggplant	0 to +2	90 to 95	2 to 4 weeks
Endive	0 to +2	90 too 95	2 to 3 weeks
Figs, dried	0 to +4	50 to 60	9 to 12 months
Garlic, dry	0 to +2	65 to 70	6 to7 months
Gooseberries	-0.5 to +1	90 to 95	2 to 4 weeks
Grapefruit	+10 to +16	85 to 90	4 to 6 weeks
Grapes	-1 to +1	85 to 90	1 to 6 months
Horseradish	0 to +2	90 to 95	1 to 3 weeks
Kale	0 to +2	90 to 95	1 to 3 months
Leeks	0 to +2	90 to 95	1 to 3 months
Lemons	+4 to +15	86 to 88	1 to 6 months

# FRUIT AND VEGETABLE Storage Data

Product	Storage temperature °C	Relative Humidity	Storage life
		%	
Lettuce	0 to +1	95 to 98	2 to 3 weeks
Limes	+3 to +10	85 to 90	1 to 6 months
Mangoes	0 to +2	90 to 95	1 to 3 months
Marrow	+10 to +13	90 to 95	5 to 14 days
Melons, honeydew	+7 to +10	85 to 90	3 to 4 weeks
Melons, water	+2 to +4	85 to 90	5 to 15 days
Mushrooms	0 to +4	90 to 95	3 to 4 days
Mushrooms, spawn	+1 to +2	75 to 80	8 months
Olives, fresh	+2 to +5	85 to 90	4 to 6 weeks
Onions	-	65 to 70	1 to 8 months
Oranges	0 to +10	85 to 90	1 to 3 months
Parsley	0 to +2	90 to 95	1 to 3 months
Parsnips	0 to +2	90 to 95	2 to 6 months
Peaches	-1 to +1	88 to 92	2 to 4 weeks
Pears	-1 to 0	90 to 95	2 to 7 weeks
Peppers, sweet	+7 to +10	90 to 95	2 to 3 weeks
Plums	-1 to +1	90 to 95	2 to 4 weeks
Pomegranates	0 to +1	88 to 90	2 to 4 weeks
Potatoes	+10 to +13	90 to 95	22 to 3 months
Potatoes, late	+3 to +10	90 to 95	3 to 6 months
Quinces	+5 to +10	90 to 95	2 to 3 weeks
Raspberries	-0.5 to 0	90 to 95	2 to 3 days
Rhubarb	0 to +2	95 to 99	2 to 4 weeks
Spinach	0 to +2	90 to 95	9 to 14 days
Strawberries	-0.5 to 0	90 to 95	5 to 7 days
Sweet corn	0 to +2	90 to 95	4 to 8 days
Tangerines	0 to +3	85 to 90	2 to 4 weeks
Tomatoes, green	+13 to 21	85 to 90	1 to 3 weeks
Tomatoes, ripe	+7 to +10	85 to 90	4 to 7 days
Turnips	0 to +10	90 to 95	4 to 5 months
Yams	+2 to +9	90 to 95	3 to 6 months

### FRUITS AND VEGETABLES Optimum Condition for Handling and Care of Fresh Product

Fruits/			Sell	Refrigerated	Sprinkle with	Remarks
Vegetables			Quickly	(40°C)	Water	
	Temp(°	RH (%)	(1-2 D)			
	F)					
Apples	30-32	85-90		Helpful	No	Avoid brushing
Avocados	40-45	85-90	Yes	No	No	Display no padded surface
Banana						
Ripe	56-58	85-90	Yes	No	No	-do-
Ripening	58-68	90-95		No	No	Avoid brushing
Cabbage	32	90-95		Helpful	Yes	
Carrots	32	90-95		Profitable	Yes	Moisten roots only on
						bunches
Cauliflower	32	90-95	Yes	Profitable	Yes	Sprinkle only if
						refrigerated
Corn, sweet	31-32	90-95	Yes	Profitable	Yes	Keep cold
Eggplant	45-50	85-90	Yes	No	No	Do not bruise
						keep off ice
Grapes	30-32	85-90	Yes	Helpful	No	Keep well ventilated
Lemons	38-40	85-90		Helpful	Yes	Sprinkling
Lettuce	32	90-95		Helpful	Yes	Avoid soaking with water
Mushroom	32-35	80-90	Yes	Helpful	No	Handle carefully
						Keep dry
Onion, dry	32	65-70		No	No	Remove loose wrapper
-						Keep dry
green	32	90-95	Yes	Profitable	Yes	Keep well ventilated
Oranges	34-38	85-90		Helpful	No	Remove decayed fruit
Peppers	45-50	90-95	Yes	Profitable	Yes	
Pineapple	45-55	85-90	Yes	No	No	-do-
Potatoes	40-50	85-90		No	No	Keep out of sun
Squash	40-50	85-90	Yes	Helpful	Yes	
Sweet Potatoes	55-60	85-90		Ňo	No	Keep ventilated
Tomatoes						_
Ripe	45-50	85-90	Yes	Helpful	No	Sell quickly
-				-		Refrigerate
Green	55-70	85-90		No	No	Ripen in back
						Sort frequently
Watermelon	40-50	80-85		Helpful		Cover with transparent
				-		film

	_	mermar i rope		
Product	Freezing	Specific heat above	Specific heat below	Latent heat kJ/kg
	temperature °C	freezing kJ/kg °C	freezing kJ/kg °C	
Apples	-1.5	3.64	1.88	281
Apricots	-1	3.68	1.92	284
Avocado	-0.5	3.01	1.67	219
Asparagus	-0.5	3.94	2.00	312
Bananas	-1	3.35	1.76	251
Beans, green	-0.5	3.81	1.97	298
Beetroot	-1	3.77	1.92	293
Blackberries	-1	3.68	1.92	284
Broccoli	-0.5	3.85	1.97	302
Brussels sprouts	-1	3.68	1.93	284
Cabbage	-1	3.94	1.97	307
Carrots	-1	3.68	1.88	280
Cauliflower	-1	3.89	1.97	30
Celery	-1	3.98	2.01	314
Cherries	-2	3.64	1.88	280
Coconuts	-0.8	2.43	1.43	
Cranberries	-0.5	3.77	1.93	288
Cucumber	-0.5	4.06	2.05	319
Dates, dried	-16	1.51	1.08	67
Eggplant	-1	4.0	2.01	312
Endive	-0.5	3.94	2.0	307
Figs, dried	-12	1.63	1.13	80
Garlic, dry	-1	2.89	1.67	207
Gooseberries	-1	3.77	1.93	293
Grapefruit	-1	3.81	1.93	293
Grapes	-2	3.60	1.84	270
Horseradish	-2	3.55	1.79	251
Kale	-0.5	3.85	1.9	291
Leeks	-1.5	3.68	1.93	293
Lemons	-1.5	3.81	1.93	295

# FRUITS AND VEGETABLES Thermal Properties

Product	Freezing temperature	Specific heat above freezing kJ/kg °C	Specific heat below freezing kJ/kg °C	Latent heat kJ/kg		
	°C					
Lettuce	0	4.02	2.0	316		
Limes	-1.5	3.83	1.42	288		
Mangoes	-1	3.7	1.86	271		
Melons, honeydew	-1	3.94	2.0			
Melons, water	-1	3.89	2.0	307		
Mushrooms	0	3.89	1.97	302		
Mushrooms, spawn	0					
Olives, fresh	-1.5	3.35	1.76	251		
Onions	-1	3.37	1.93	286		
Oranges	-1	3.77	1.92	288		
Parsley	-1	3.8	1.9	285		
Parsnips	-1	3.52	1.84	260		
Peaches	-1	3.77	1.42	288		
Pears	-1.5	3.6	1.88	275		
Peppers, sweet	-1	3.94	1.97	307		
Plums	-1	3.68	1.88	274		
Potatoes	-1	3.56	1.86	270		
Potatoes, late	-0.5	3.43	1.8	258		
Quinces	-2	3.8	1.91	94		
Raspberries	-0.5	3.56	1.86	284		
Spinach	-0.5	3.94	2.0	307		
Strawberries	-0.5	3.85	1.76	300		
Sweet corn	-0.5	3.31	1.76	246		
Tangerines	-1	3.77	1.93	290		
Tomatoes, green	-0.5	3.98	2.0	312		
Tomatoes, ripe	-0.5	3.94	2.0	312		
Turnips	-1	3.89	1.97	302		
Yams	-1	3.53	1.77	248		
		•				

# FRUITS AND VEGETABLES Thermal Properties

# FRUITS AND VEGETABLE Heat of Respiration

Product	Heat of respiration kJ/kg 24 hours				
	0°C	5°C	10°C		
Apples	0.9	1			
Apricots	1.3	1.9	4.8		
Artichokes, globe	6.1	8.2	14		
Avocado	n/a	15	25		
Asparagus	7.3	14	27		
Bananas			9		
Beans, green		12	17		
Beetroot	1.3	2.4	3.1		
Blackberries	4.3	9.7	19		
Broccoli	4.7	13	17		
Brussels sprouts	5.1	10	19		
Cabbage	2.3	2.6	3.8		
Carrots	2	3	4		
Cauliflower	4.5	6.3	12		
Celery	1.9	2.7	5.1		
Cherries	1.3	3.5	7.7		
Coconuts					
Cranberries		1.2	1.7		
Cucumber			5.9		
Dates, dried					
Eggplant (aubergine)					
Endive	2.4	2.9	4.7		
Figs, dried					
Garlic, dry	1.5	6.1	15		
Gooseberries	1.7	3.5	6.5		
Grapefruit			3		
Grapes	0.4	1.1	1.7		
Horseradish	2.1	2.9	7.0		
Kale	2.5	2.9	4.1		
Leeks	2.8	6.1	15		
Lemons	-	-	41		

# FRUITS AND VEGETABLE Heat of Respiration

Product	Heat of respiration kJ/kg 24 hours			
	0°C	5 °C	10°C	
Lettuce	2.7	3.4	5.6	
Limes	0.5	0.7	1.1	
Mangoes	3.2	4.1	12	
Marrow			6.1	
Melons, honeydew		1.7	2.1	
Melons, water		2.1	3.9	
Mushrooms	8.6	18	31	
Mushrooms, spawn				
Olives, fresh	1.0	3.0	7.5	
Onions	1.0	1.3	1.9	
Oranges	1.08	1.8	3.3	
Parsley	11	19	38	
Parsnips	1.35	2.7	7.2	
Peaches	1.34	1.95	4.3	
Pears	1.0	2.2	3.1	
Peppers, sweet		2.7	3.1	
Plums	0.64	1.7	2.6	
Pomegranates	0.9	1.3	2.6	
Potatoes			3.0	
Potatoes, late		3.1	4.3	
Quinces		2.2	3.0	
Raspberries	5.1	8.6	10	
Rhubarb	2.8	3.9	4.9	
Spinach	5.1	11	21	
Strawberries	3.7	5.8	19	
Sweet corn	10	19	28	
Tangerines	1.1	1.9	3.9	
Tomatoes, green			5	
Tomatoes, ripe			7	
Turnips	2.2	2.4	3	
Yams		4.2	6	

	Density	and Gross	s neating va	alue	
Fuel	API	Kg/l	BTU/lb	Kcal/kg	KJ/kg
Avgas	64.6	0.7216	20,950	11,639	48,729
Avturbo	47.1	0.7923	19,800	11,000	46,055
Coconut Oil	21.5	0.9248	155,748	8,749	36,630
Diesel	36.0	0.8448	19,650	10,917	45,706
Ethanol	46.7	0.7940	12,800	7,111	29,773
Fuel Oil	155.0	0.9659	18,600	10,333	43,263
Gasoline	61.0	0.7351	220,500	11,389	47,683
Premium					
Gasoline Regular	59.0	0.7428	20,750	11,528	48,264
Kerosene	47.1	0.7923	19,800	11,000	46,055
LPG	-	0.5500	21,180	11,767	49,264
Methanol	46.3	0.7960	9,600	5,333	22,329
Naphtha	60.0	0.7389	20,620	11,456	47,962
Coal			9,000		20,900
Bagasse ( 50%			4,000		9,300
moisture)					
Wood Waste (			4,000		9,300
30% moisture)					
Rice Hull			6,000		14,000
Coco-shell			8,630		20,100
Coco Husk			7400		17, 200
			1,020		37,975
Natural Gas			$(Btu/ft^3)$		$(KJ/m^3)$

#### FUEL Density and Gross heating Value

FUEL	
<b>Density and Gross Heating</b>	Value

Fuel	API	Kg/l	BTU/lb	Kcal/kg	KJ/kg
			650		24,200
Biogas			(Btu/cu.ft)		(KJ/cu.m)
Premium	61.0	0.7351	0.500	11,389	47,683
Regular	59.0	0.7428	20,750	11,528	48,264
At 33% Thermal			10,340	2,606	10.909
Efficiency					
At 100% Thermal			3,412	860	3,600
Efficiency					

# FUEL Properties

Property	Propane	Butane
Chemical composition	$C_3H_8$	$C_4H_{10}$
Boiling Point, °F	-43.8	+31.1
Specific gravity, liquid, at 60/60 F	0.508	0.584
Specific gravity, vapor, at 60 F, 14 psia (air = 1)	1.522	2.006
Specific heat, vapor, at 14 psia, Btu/lb, cy	0.390	0.396
Specific heat vapor, at 14 psia, Btu/lb CX	0.346	0.363
Heat of vaporization, at 14 psia, Btu/lb	183	166
Weight, lb/gal	4.23	4.86
Vapor produced, cu. ft/gal	36.5	31.8
Heat content, gross Btu/lb	21,690	21,340
Explosion limits, % in air (lower)	2.0 - 2.4	1.5 - 1.9
Explosion limits, % in air ( upper)	7.0 - 9.5	5.7 - 8.5
Air required for combustion, lb/lb of fuel	15.6	15.4

Fuel	Proximate Analysis			Heat Content	
Tuer	Moisture (%)	Volatile Matter (%)	Fixed Carbon (%)	Ash (%)	(BTU/lb)
Anthracite Coal Fines					
		13.3	74.7	12.0	12750
Apitong Bagasse		19.2	79.7	1.2	13713
Arhar Stalk		83.5	14.8	1.8	6522
Bagasse		82.4	15.5	2.1	7930
Bagtikan		24.1	72.5	3.5	8933
Bakauan Babae		4.2	90.9	4.9	
Bakauan Lalaki		4.1	90.0	5.0	
Bamboo Dust		75.8	15.6	9.1	6956
Barley Straw		73.8	18.8	7.3	7422
Charcoal Briquette					11603
Coconut Choir		70.3	26.8	2.9	7913
Coconut Husk	13.7	72.4	26.0	6.3	8736
Coconut Shell	10.8	78.9	20.3	0.8	8630
Coconut Shell Charcoal					
	4.7	5.5	91.1	3.4	14223
Coconut Trunk		79.7	19.3	1.0	8182
Coffee Ground		82.6	16.2	1.2	7990
Coffee Hull					7727
Coffee Hull dust					8519
Coir Dust		61.9	28.2	9.9	7437
Corn Cobs		78.9	19.0	2.1	7716
Corn Dust		61.9	28.2	9.9	7437
Corn Fiber		68.2	28.2	3.0	8095
Cotton Stalk		70.9	22.4	6.7	7956

FUEL Proximate Analysis and Heat Content

Fuel	Proximate Analysis				Heat Content
1 401	Moisture	Volatile	Fixed	Ash	(BTU/lb)
	(%)	Matter	Carbon	(%)	
Ethanol (190 Proof)		(%)	(%)		11697
Green Charcoal		32.6	33.48	33.9	8935
Groundnut Shell		68.1	25.0	6.9	7478
High Grade Coal					
(Semirara)	12.4	40.1	34.9	12.6	9134
Ipil-ipil Wood		82.6	16.6	0.8	8144
Jute Stick		75.3	19.0	5.7	8434
Kerosene (low grade)					18500
Lanipau		25.7	72.8	1.5	14000
Low Grade Coal (Semirara)	12.1	24.5	2.2	61.2	2760
Mayapia		19.3	80.4	0.2	16776
Mill Residue		5.2	80.5	4.3	
Mix of Diff. Species		19.4	76.6	3.9	11700
Mix of Lauan & Tangile					
		20.8	78.9	0.3	16791
Mix of Red Lauan w/					
Lauan, Bagtikan &		20.5	70.0	1.0	15010
Tangile		20.5	78.3	1.2	15010
Mustard Shell		70.1	14.5	15.4	7652

FUEL Proximate Analysis and Heat Content

Fuel			Heat Content		
	Moisture	Volatile	Fixed	Ash	(BTU/lb)
	(%)	Matter	Carbon	(%)	
		(%)	(%)		
Oat Straw		78.9	17.1	4.1	7696
Peanut Hull	11.6	74.8	21.4	3.3	7378
Petroleum Cokes		23.0	85.9	0.5	13220
Premium Gasoline					20250
Pine Needle		72.4	26.1	1.5	8739
Red Lauan		14.5	85.2	0.2	15498
Regular Gasoline					20120
Rice Hull		64.4	12.6	20.5	6466
Rice Hull Briquette		61.5	15.3	23.2	6230
Rice Hull Briquetted					
@ 550°C	2.8	59.1	14.5	23.6	6206
@ 450°C	3.9	59.8	20.0	16.4	6010
@ 350°C	4.4	58.6	18.9	18.2	5814
Rice Stalk		66.7	18.6	18.2	6257
Rye Straw		83.0	15.0	2.0	7869
Sal Seed Leaves		60.0	20.2	19.8	8087
Sal Seed Husk		62.5	28.1	9.4	8956
Tangile		18.6	80.5	1.0	15444
Toog		17.7	79.1	3.4	10270
Wheat Straw		79.6	16.8	3.6	7956
Wood		77.5	17.5	2.0	6710
Wood Charcoal					11786
Wood Waste					7454

FUEL Proximate Analysis and Heat Content

Fuel	Density (lb/ft ³ )	Stoichiometric Air Requirement
A. Gas		
Acetylene	6.76	13.35 lb air/lb of fuel
Biogas		5.7 $m^{3 air}/m^{3}$ of fuel
Butane		31.1 $\text{ft}^3 \text{air/ft}^3 \text{ of fuel}$
Carbon Monoxide	7.27	2.48 lb air/lb of fuel
Ethane	7.82	16.16 lb air/lb of fuel
Ethylene	7.30	14.85 lb air/lb of fuel
Hydrogen	0.52	34.80 lb air/lb of fuel
Methane	4.16	17.32 lb air/lb of fuel
Natural Gas		9.6 $ft^3 air/ft^3$ of fuel
Propane		24.0 $\text{ft}^3 \text{air/ft}^3 \text{ of fuel}$
Town Gas		3.7 $m^{3 air}/m^{3}$ of fuel
B. Solid		
Anthracite		13.35 lb air/lb of fuel
Bituminous		10.70 lb air/lb of fuel
Coke		11.20 lb air/lb of fuel
Corn Cobs		5.7 kg air/kg fuel
Corn Strover		4.0 kg air/kg fuel
Crude Oil		14.45 lb air/lb of fuel
Lignite		8.75 lb air/lb of fuel
Peat		7.30 lb air/lb of fuel
Pure Carbon		11.58 lb air/lb of fuel
Rice Hull		4.7 lb air/lb of fuel
Semi-Anthracite		11.59 lb air/lb of fuel
Semi-Bituminous		11.41 lb air/lb of fuel
Sub-Bituminous		10.24 lb air/lb of fuel
Wood, dry		6.2 kg air/kg fuel

# FUEL Stoichiometric Air Requirement

* at maximum percentage of  $CO_2$ 

#### FUEL Properties of LPG Fuel

Substance	Density	Boiling Temp.	Octane Member
	$(g/cm^3)$	(°C)	(Research)
Methane	-	-125	110
Ethane	0.374	-53	104
Propane	0.508	-8	100
Butane	0.584	0	92
Pentane	0.631	36	61

#### FURNACE Burning and Furnace Efficiency

Furnace	Burning Efficiency (%)	Furnace Efficiency (%)
Tilted Grate with Heat	93	56
Exchanger		
Inclined Grate w/o Heat	95	71
exchanger		
Flat Grate w/o Heat	99	67
Exchanger		
Cyclonic	99	62

#### GASIFICATION Gas Composition of Gasifier

Carbon Monoxide, CO	15 - 30 %
Hydrogen, H ²	12 - 20 %
Methane, CH ₄	0.5 – 7 %
Carbon dioxide, CO ₂	3 - 15 %
Nitrogen N ₂	50-58 %

rypes,	Auvantages, and Disauvan	lages of Gas Froducers
Туре	Advantages	Disadvantages
Updraft	Suitable for many biomass fuel	Generates large amount of tar
1	Can gasify wet fuel	Very large
	Does not require any specific fuel	
	size	
Downdraft	Generates little amount of tar	Requires special
	Can be built very compact	Cannot be built over 200 kW electric
	Can be built for very small gas	output
	output	Fuel needs to be well sized
Crossdraft	Very compact gasifier	Suitable for charcoal only
	Highly suitable for small power	Only for special prepared fuel
	output	Cannot gasify wet fuel
	Good for changing loads	
Fluidized Bed	Highest gasification rate per m2	Generates tar
	grate area	Only for small fuel particles
	Ideal for small fuel particle	(<20 mm)
		Not well developed technology

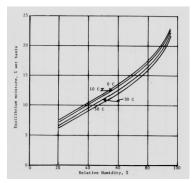
# GASIFICATION

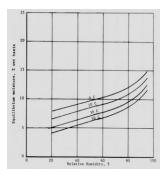
# Types, Advantages, and Disadvantages of Gas Producers

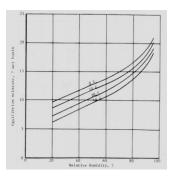
### GEARS Summary

Туре	Applications	Advantages	Disadvantages
External spur	Parallel shafting	Moderate cost	Small contact ratio
	Moderate Speed	No end thrust	
	Parallel shafting	Short centers	Difficult mounting
Internal spur	Moderate speeds	Large contact ratio	Expensive
-	Same shaft directions	Partial safety guard	
		No end thrust	
Helical	Parallel Shafting	Quiet operation	
	High Speeds	High load-carrying	End Thrust
		capacity	
Herring bone	Parallel shafting	No end thrust	
C	Heavy duty	Large tooth contact	
		High load-carrying	Expensive
		capacity	
Bevel types	Angular drives	Moderate cost	Difficult Mounting
Straight tooth	Moderate speeds		
Zerol	Angular drives	Long gear life	Expensive
	e	Smooth and quiet	Difficult
		Low stress	mounting
		concentration at tooth	C
		tip	
	Right-angle drives	Good tooth meshing	Expensive
Spiral	High speeds	High load-carrying	Difficult Mounting
		capacity	
	Nonintersecting shafts	Mounting rigidity	
Hypoid	Right-angle drives	possible	Expensive
•1	0 0	High load-carrying	
		capacity	
	Nonintersecting shafts	High ratios	
Worm gears	Right-angle drives	Quiet operation	Difficult Mounting
-		High load-carrying	
		capacity	
		Compact	
		Self-locking possible	
Rack and pinion	Rotary to linear	Compact	Difficult mounting
	Or linear to rotary	÷	Slow Speeds
			Small contact ratio

GEAR OIL Kinematic Viscosity				
SAE Viscosity Number Kinematic Viscosity (100°C) mm ² /s				
	Min	Max		
70W	4.1	-		
75W	4.1	-		
80W	7.0	-		
85W	11.0	-		
90	13.5	2.0		
140	24.0	41.0		
250	41.0	-		


GRAINS Dry Matter Loss Constant						
Grain size	Grain size A C D E					
Long	Long 0.001889 0.7101 0.02740 31.63					
Medium	0.000914	0.6540	0.03756	33.61		

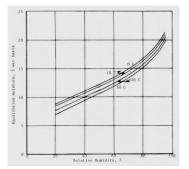

# **GRAINS Rough Rice Heat of Vaporization**


Moisture Content	Temperature	Heat Vaporization
(% dry basis)	(°C)	(kJ/kg)
5	10	3563-4743
	20	3803-4470
	30	4047-4229
	40	4015-4285
15	10	2698-3078
	20	2862-2953
	30	2846-2987
	40	2753-3040
30	10	2474-2550
	20	2468-2508
	30	2451-2471
	40	2426-2438

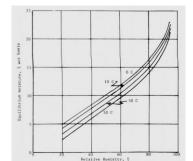
Physical Properties				
Grain/Seed	Moisture	Void Space	Kernel Specific	Bulk
	Content	(%)	Gravity	Density $(g/cm^3)$
	(%wb)			
Barley	10.4	39.5	1.33	0.615
	9.8	45.4	1.21	
	10.7	49.9	1.24	
Castor beans				0.589
Clover				0.769
Corn, Ear				0.448
Corn, Shelled	25.0	44.0	1.27	0.717
Cottonseed				0.410
Cowpeas				0.769
Grain Sorghum	9.5	37.0	1.22	0.641
	9.9	36.8	1.26	0.718
Kapok				0.448-0.512
Lentils				0.769
Millet	9.4	36.8	1.11	0.615-0.641
Mustard				0.743-0.769
Oats	9.8	47.6	1.05	0.410
	10.3	55.5	0.99	
Peanuts, unshelled				0.218
Rice, rough	11.9	50.4	1.11	0.577
	12.4	46.5	1.12	
Soybeans	6.9	36.1	1.18	0.769
	7.0	33.8	1.13	
Wheat	9.8	42.6	1.30	0.769
	9.8	40.1	1.29	

### GRAINS AND CEREALS Equilibrium Moisture Content Curves

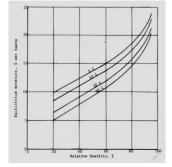








**Edible Beans** 

**Peanuts in Pod** 


**Rough Rice** 



Sorghum



Soybean



Yellow Dent Corn

#### HEAT TRANSFER Film Coefficient for Air at Various Surfaces

Surface	Film Coefficient f, Btu/(hr)(ft ² )(°F)
Very Smooth	$1.4 + 0.28\nu t$
Smooth wood or plaster	$1.6 + 0.3\nu$
Cast concrete	$2.0 + 0.4\nu$
Rough stucco	$2.1 + 0.5\nu$

#### HEAT TRANSFER Thermal Conductivities of Some Building Insulation

Material	Density	Temperature,	Conductivity,
	lb/ft ³	°F	Btu/(hr)(ft)(°F)
Building brick		68	0.4
Concrete:			
Cinder			0.20
Stone	144		0.54
Hair felt	17	86	0.021
Wood, pine across grain	34	59	0.087
Cork:			
Granulated	8		0.025
Board	7		0.0225
Board	10.6		0.025
Glass wool, curled	4-10		0.024
Cellular glass	9.0		0.40

HEAT TRANSFER Fluid Properties					
Medium	Density	Specific heat	Thermal	Boiling	Freezing
	kg/m3	capacity kg/kJ	conductivity W/m	point °C at	point °C
		K at	K at temperature	101.3 kPa	_
		temperature °C	°C		
Aroclor*†	1140	1.16 at 25	0.11 at 25	340	-7
		1.36 at 200	0.11 at 200		
Dowthern	1070	1.55 at 12	0.14 at 12	258	-12
$\mathrm{A}^{*\dagger}$					
	880	2.51 at 230	0.13 at 150		
Essotherm*	850	1.90 at 25	0.13 at 25	-	-
	710	2.75 at 250			
Ethanediol	1100	2.29 at 15	0.26 at 15	198	-13
Fenso 68*	890	1.12 at 50	0.13 at 50	-	-
Glycerol	1260	2.42 at 15	0.29 at 15	290	20
IL 2023*	880	1.90 at 25	0.13 at 25	-	-
	760	2.53 at 200	0.12 at 200		
Steam	600	2.03 at 100	0.025 at 100	-	-
(saturated) ‡					
	46	6.15 at 300	0.067 at 300		
Water ‡	1000	4.19 at 15	0.59 at 15	100	0
	917	4.31 at 150	0.68 at 150		

*Trade name.

† No longer commercially available.
‡ Under pressure for temperatures above 100°C.

Material	Conductivity	Resistivity
	W/m K	m K/W
Air	0.026	38.6
Aluminum	150	
Asbestolux	0.12	8.67
Asbestos: flues and pipes	0.27	3.68
insulating board	0.14	6.93
lightweight slab	0.053	18.7
Asphalt: light	0.58	1.73
heavy	1.23	0.83
Brass	150	
Bricks: common	1.43	0.69
engineering	0.79	1.25
Brine	0.48	2.10
Building board	0.079	12.62
Building paper	0.065	15.39
Caposite	0.052	19.28
Cardboard	0.144 to 0.288	6.9 to 3.5
Celotex	0.048	21.0
Concrete: 1:2:4	1.4	0.69
lightweight	0.40	2.5
Copper	300	
Cork	0.043	23.1
Cotton waste	0.059	16.9
Densotape	0.25	4.0
Diatomaceous earth	0.087	11.5
Econite	0.098	10.19
Felt	0.039	25.7
Fiberglass	0.036	27.7
Firebrick	1.30	0.76
Fosalsil	0.14	0.69
	•	

### HEAT TRANSFER Thermal Conductivities of Different Materials

Material	Conductivity	Resistivity
	W/m K	m K/W
Glass	1.05	0.97
Glasswool	0.04	24.8
Gold	310	
Granwood floor blocks	0.32	3.1
Gyproc plasterboard	0.16	6.3
Gypsum plasterboard	0.16	6.3
Hardboard	0.094	10.68
Holoplast: 25 mm panel	0.14	7.3
Ice	2.31	0.43
Insulating board	0.059	16.99
Iron: cast	65	0.154
wrought	58	0.0172
Material	Conductivity	Resistivity
	W/m~K	m K/W
Jute	0.036	27.7
Kapok	0.036	27.7
Lead	35	0.029
Linoleum: cork	0.072	13.9
PVC	0.22	4.65
rubber	0.30	3.33
Marinite	0.11	9.36
Mercury	7	0.143
Mica sheet	0.65	1.53
Mineral wool	0.056	23.1
Nickel	58	0.0172
Onozote	0.029	34.7
Paper	0.13	7.69
Perspex	0.21	4.8
Plaster	0.48	2.1

#### HEAT TRANSFER Thermal Conductivities of Different Materials

HEAT TRANSFER
<b>Thermal Conductivities of Different Materials</b>

Material	Conductivity	Resistivity
	W/m K	m K/W
Platinum	69	0.0145
Polystyrene: cellular	0.033	29.8
Polyurethane: cellular	0.042	23.9
Polyzote	0.032	31.5
Porcelain	1.04	0.96
Refractory brick:		
Alumina	0.32	3.1
Diatomaceous	0.13	7.70
Vermiculite insulating	0.19	5.13
Refractory concrete:		
Diatomaceous	0.26	3.9
Aluminous cement	0.46	2.15
Rubber: natural	0.16	6.3
Silicone	0.23	4.4
Sand	0.42	2.4
Scale, broiler	2.3	0.43
Silver	420	
Sisalkraft building paper	0.066	15.0
Slate	2.0	0.5
Snow	0.22	4.65
Steel, soft	46	
Steel wool	0.108	9.22
Stillite	0.036	27.7
Stone: granite	2.9	0.35
Limestone	1.5	0.62
Marble	2.5	0.42
Sandstone	1.9	0.55

		<b>D</b>
Material	Conductivity	Resistivity
	W/m K	m K/W
Sundeala: insulating		
Material	Conductivity	Resistivity
	W/m K	m K/W
board	0.052	19.3
medium		
hardboard	0.074	13.9
Tentest	0.05	19.8
Thermalite	0.20	4.9
Tiles:		
Asphalt and asbestos	0.55	1.8
Burnt clay	0.84	1.2
Concrete	1.2	0.90
Cork	0.084	11.9
Plaster	0.37	2.63
Treetex	0.056	17.8
Water	0.60	1.7
Weyboard	0.091	11.1
Weyroc	0.14	6.9
Woodwool	0.040	24.8
Wool	0.043	23.1
Zinc	64	

### HEAT TRANSFER Thermal Conductivities of Different Materials

### HEAT TRANSFER Heat-Loss Coefficients

	Watts/sq. ft/°F TD
Watt loss through solid back walls (wall thickness, 8 in.):	
Plain brick, no inside finish	0.146
Inside plaster direct on walls, no furring	0.135
Inside furred with 1/2-in. plaster	0.087
Inside 1/2-in. rigid insulation furred on brick	0.064
Inside furred with 1 5/8. mineral-wool insulation	0.035
Inside furred with 3 5/8-in. mineral-wool insulation	0.022
Watt loss through brick-veneer walls, wood framing, and	
sheathing:	
Inside plaster, no insulation	0.082
Inside 1/2-in. insulating board	0.061
Inside plaster with single-ply aluminum foil	0.053
Inside plaster with 2-in. mineral-wool blanket	0.025
Inside plaster with 3 5/8-in. mineral-wool fill	0.017
Watt loss through concrete-block walls, 8-in. concrete block with	
air cells:	
No interior finish, no insulation	0.164
Inside plaster on blocks, no insulation	0.152
Inside furred and plastered, no insulation	0.091
Inside furred, plastered, and 1 5/8-in. insulation	0.035
Inside furred, plastered, and 3 5/8-in. insulation	0.022
Watt loss through wall with wood siding or shingles, 1-in. wood	
sheathing and moisture barrier:	
Inside plaster	0.073
Inside 1/2-in. insulating board	0.056
Inside 1/2-in. insulating board and plaster	0.055
Inside 1-in. insulating board and plaster	0.044
Inside plaster with 2-in. insulating blanket	0.025
Inside plaster with 3 5/8 in. insulation	0.018

#### HEAT TRANSFER Heat-Loss Coefficients

	Watts/sq. ft/°F TD
Watt loss through floors:	
6-in. concrete bare	0.173
4-in. concrete bare	0.202
4-in. concrete with asphalt tile	0.173
4-in. concrete with double floor on sleepers	0.073
Double wood floor:	
Over ground, solid, and unventilated foundation	0.100
With lath and plaster beneath	0.073
With 1/2-in. rigid insulation beneath joists	0.056
With lath and plaster beneath and 3 5/8-in. rock-wool fill	0.019
Over ground with asphalt tile surface	0.085
Over ground with 1-in. insulation blanket	0.044
Over ground with 2-in. insulating blanket	0.030
Over ground with 3 5/8-in. mineral-wool insulation	0.023
Watt loss through interior walls:	
Studding with lath and plaster, one side	0.097
Studding with lath and plaster, both sides	0.095
4-in. brick plastered both sides	0.126
Studding with 1/2-in. rigid insulation, one side	0.075
Studding with 1/2-in. rigid insulation, both sides	0.056
Studding with 3 5/8-in. mineral-wool fill	0.019
Watt loss through ceilings:	
Single wood on joists, no flooring above	0.132
Lath and plaster, no flooring above	0.181
Lath and plaster with double flooring above	0.070
Lath and plaster with 3 5/8-in. mineral wool above	0.019
1/2-in. gypsum board with 3 5/8-in. mineral wool above	0.020
Lath and plaster with 2-in. insulating blanket	0.035
Lath and plaster with 1-in. insulating blanket	0.056

#### HEAT TRANSFER Heat-Loss Coefficients

	Watts/sq. ft/°F TD
Watt loss through roofs:	
Flat metal roof, no insulation beneath	0.275
Slate or tile on sheathing, no insulation	0.161
Asphalt shingles or roll roofing, no insulation	0.155
Wood shingles, no insulation	0.141
Flat with tar and gravel, tar and gravel board	0.088
Asphalt shingles with 1/2-in. insulating board	0.067
Slate or tile with 1/2-in. insulating board	0.070
Wood shingles with 1/2-in. insulating board	0.064
Asphalt shingles with 3 5/8-in. insulation	0.025
Slate or tile with 3 5/8-in. insulation	0.025
Wood shingles with 3 5/8-in. insulation	0.024
(For reflective insulation use recommendations of	
manufacturer)	
Watt loss through windows and doors and glass:	
Glass, single thickness	0.331
Glass, double thickness (3/4-in. air space)	0.132
Double glass (1/4-in. air space)	0.167
Single glass with storm window	0.200
Skylight, single glass	0.340
Skylight, double glass (3/4-in. air space)	0.141
Hollow-glass block wall	0.135
Solid-wood door exposed to outside	0.150
Solid-wood door with glass storm door	0.103

HUMAN BODY Heat Loss				
Activity	Total Loss,	Sensible-heat	Latent-heat loss	
	Btu/hr	loss,	Btu/hr	
		Btu/hr		
Seated at rest	330	180	150	
Seated, very light work	400	195	205	
Moderately active, standing, light	450	200	250	
work				
Light factory work	750	220	530	
Moderately heavy factory work	1,000	300	700	
Heavy work	1,450	465	985	

# HUMAN BODY Heat Loss in Low Temperature Spaces

Temperature of space, °F	Total heat loss, Btu/hr
50	720
40	840
30	950
20	1,050
10	1,200
0	1,300
-10	1,400

#### HYDRO POWER Turbine Efficiency

Turbine	Efficiency
	(%)
Undershoot Waterwheel	25 - 40
Overshoot Waterwheel	50-70
Breast Wheel	50 - 60
Poncelet Waterwheel	40-60
Vertical Shaft Watermill	20-35
Impulse Turbine	70-87
Cross Flow Turbine	60 - 80
Reaction Turbine	65 - 90

#### HYDRO POWER Specific Speed of Various Turbine Types

Turbine	Specific Speed
Impulse Turbine	
Single-Jet Pelton	10 - 35
2 – Jet Pelton	10 - 45
3 – Jet Pelton	10 – 55
Turgo	20 - 80
Crossflow	20-90
Reaction Turbine	
Francis	70 - 500
Kaplan	350 - 1100
Properteis	600 - 900

Operation Characteristics							
Bird	Incub.	Temp.	Humidity	Humidity	No Egg	Open	Open
	Period	(C, dry	(C, wet	Last 3	Turning	Vents	Vents
	(days)	bulb)	bulb)	$(days^2)$	After	Addt'l 1/4	(if
				_			needed)
Chicken	21	37.8	29.4 -	90	18 th day	10 th day	$18^{\text{th}}$ day
			30.6		_	-	_
Turkey	28	37.2	28.9 - 30	90	25 th day	14 th day	25 th day
Duck	28	37.8	29.4 - 30	90	25 th day	12 th day	25 th day
Muscovy	35-37	37.8	29.4 - 30	90	31 st day	15 th day	30 th day
Duck						-	_
Goose	28-34	37.2	30 - 31.1	90	25 th day	1 st day	25 th day
Guinea	28	37.8	29.4 -	90	25 th day	14 th day	24 th day
			30.6				
Peafowl	28-30	37.2	28.9 - 30	90	25 th day	14 th day	25 th day
Coturnix	17	37.8	29.4 - 30	90	15 th day	8 th day	14 th day
Quail							
Pigeon	17	37.8	29.4 - 30	90	15 th day	8 th day	$14^{\text{th}} \text{ day}$

### **INCUBATOR Operation Characteristics**

### **IMPLEMENT** Criteria for the Selection

Criterion	Cultivator	Chisel Plough	Subsoiler
intended use	shallow, stubble	loosening at plowing	loosening and
	tillage	depth	breaking up of
			plough sole
chisel type	wide to normal	normal to narrow	narrow to normal
tine type	spring, spring loaded	spring loaded or rigid	rigid
	or rigid		
angle of attack	up to 60 deg.	30 deg.	30 deg.
distance between	at least 55-60 cm	at least 70 cm	at least 75 cm
tines			
furrow distance	about 20 cm	25-30 cm	30-50 cm
required frame	70 cm	70-80 cm	70-90 cm
height			
rear mounted tools	necessary	desirable	desirable
working depth	5-15 cm	15-30 cm	30-50 cm

#### IMPLEMENT Draft of Moldboard Plow (N/cm2)

Soil	Equation
Silty clay	$7 + 0.049 \text{ S}^2$
Clay loam	$6 + 0.053 \text{ S}^2$
Loam	$3 + 0.021 \text{ S}^2$
Sandy silt	$3 + 0.056 \text{ S}^2$
Silty loam	$2.8 + 0.023 \text{ S}^2$
Sand	$2 + 0.0.13 \text{ S}^2$

S is speed in km per hour

### **IMPLEMENT** Differences Between Moldboard and Disc Plow

Criteria	Disc	Moldboard
inverting	medium	good
mixing	medium	hardly
crumbling	medium/good	medium
burying of long stubble	not completely	completely
plough sole compaction	Little	by landside (heel) less by
		share
susceptibility for		
damage by roots and	little	more
stones		
possible fields of use	Heavy, dry, stony soils forest	clean
	soils	fields
durability	High	medium
weight	High	
drought requirement	High	high

## IMPLEMENT Specific Draft

Machine	Normal Range	
Plow	5-12 lb/in ² of furrow section	
Lister	400-750 lb per row	
One-way disk	150-350 lb per ft width	
Single-disk harrow	40-130 lb per ft width	
Tandem-disk harrow	80-160 lb per ft width	
Tandem disk harrow, 22 in-diameter, 9 in	170-225 lb per ft width or 90% of weight	
spacing		
Spike tooth harrow	30-60 lb per ft width	
Spring-tooth harrow	75-150 lb per ft width	
Duck foot field cultivator	90-160 lb per ft width	
Roller	30-60 lb per ft width	
Subsoiler	80-160 lb per in. of depth	

# IMPLEMENT Draft Requirement of Tillage, Seeding, and Planting Equipment

Machine	Typical Range of Requirements	
Tillage		
Mouldboard or disk plough	(Specific draft or force per furrow cross-	
	sectional area)	
Light soil	$2.1-4.1 \text{ N/cm}^2 [3-6 \text{ lbf/in}^2]$	
Medium soil	3.4-6.2 N/cm ² [5-9 lbf/in ² ]	
Heavy soil	5.5-9.7 N/cm ² [8-14 lbf/in ² ]	
Lister ( in firm soil)	1.8-3.6 kN/bottom	
	[400-800 lbf/bottom]	
Vertical-disk plough (one-way	2.6-5.8 kN/m [180-400 lbf/ft]	
Disk)		
Disk harrow		
Single-acting	0.7-1.5 kN/m [50-100 lbf/ft]	
Tandem (light-duty)         1.5-2.9 kN/m [100-200 lbf/ft]		
Offset or heavy tandem	3.6-5.8 kN/m [250-400 lbf/ft]	
Subsoiler 120-190, 190-280 N/cm depth		
	[70-110, 110-160 lbf/inch depth]	
Chisel plough or chisel-type field		
Cultivator	0.23-0.69 kN/m per cm depth	
Field cultivator with sweeps, 8 to		
13 cm (3 to 5 in) depth	1.5-4.4 kN/m [100-300 lbf/ft]	
Powered rotary tiller,		
Conventional, 8 to 10 cm (3	10-17, 17-24, 21-28 equiv. N/cm ³	
	[15-25, 25-35, 30-40 equiv. lbf/in ² ]	
Spring-tooth harrow	1.1-2.9 kN/m [75-200 lbf/ft]	
Spike-tooth harrow	0.3-0.9 kN/m [20-60 lbf/ft]	
Rod weeder	0.9-1.8 kN/m [60-120 lbf/ft]	

### IMPLEMENT Draft Requirement of Tillage, Seeding, and Planting Equipment

Machine	Typical Range of Requirements	
Roller or packer	.3-2.2 kN/m [20-150 lbf/ft]	
Rotary hoe	0.4-1.5 kN/m [30-100 lbf/ft]	
Row-crop cultivator		
Shallow	0.6-1.2 kN/m [400-80 lbf/ft]	
Deep	0.11-0.23 kN/m per cm depth	
	[20-40 lbf/ft per inch depth]	
Planting		
Row-crop planter, drilling seed		
only	0.45-0.8 kN [100-180 lbf] per row	
Grain drill	0.4 - 1.5 kN/m [30-100 lbf/ft]	
Broadcaster		
Row-crop planter, most other		
crops including vegetables		
Fertilizer application		
Fertilizer spreader (broadcast)		

#### IMPLEMENT

# Typical Disk Harrow Blade Spacing and Weight per Unit Length of Gang

Disc Blade Dimension	Blade Spacing	Weight per Unit Length
(cm)	(cm)	(Kg/m)
40	16 - 23	60 - 165
50	20 - 25	120 - 240
60	28 - 30	150 - 270

Equipment	Field Efficiency		
	(%)		
Plow			
Indigenous	30-60		
Moldboard	30-80		
Disk	30-80		
Disk Harrow			
Single action	65-85		
Double action	60-80		
Rotary Tiller	60-80		
Harrow			
Spike/Peg	70-90		
Spring tine	70-90		
Rolling or Leveling	60-80		
Cultivating	60-85		
Row Planter	50-65		
Transplanter	30-60		
Grain Drill	60-75		
Reaping or Binding	60-80		
Combining	50-75		
Mowing	50-80		
Raking	60-85		
Baling	50-75		
Field Chopping	40-70		

# **IMPLEMENT** Field Efficiency of Various Equipment

Equipment	Speed (km/hr)
Plow	
Indigenous	1.6-3.5
Moldboard	2.4-5.0
Disk	2.5-5.0
Disk Harrow	
Single action	1.6-4.2
Double action	1.5-4.0
Rotary Tiller	0.8-2.8
Harrow	
Spike/Peg	1.6-6.0
Spring tine	1.6-5.0
Rolling or Leveling	0.8-5.0
Cultivating	1.6-4.0
Row Planter	1.6-5.0
Transplanter	0.8-2.5
Grain Drill	1.6-5.0
Reaping or Binding	1.6-3.5
Combining	1.6-4.8
Mowing	1.6-4.8
Raking	2.4-5.0
Baling	2.4-5.0
Field Chopping	3.0-5.0

## **IMPLEMENT Operating Speed of Various Agricultural Field Equipment**

Equipment	Specific Power Requirement	
Plow		
Indigenous	$0.14-07 \text{ kg/cm}^2$	
Moldboard	$0.21-1.12 \text{ kg/cm}^2$	
Disk	$0.21-1.00 \text{ kg/cm}^2$	
Disk Harrow		
Single action	0.45-1.5 kg/cm	
Double action	1.20-2.70 kg/cm	
Rotary Tiller	0.70-3.50 kg/cm	
Harrow		
Spike/Peg	1.80-2.70 kg/peg	
Spring tine	10.0-25.0 kg/tine	
Rolling or Leveling	0.15-0.90 kg/cm	
Cultivating	6-20 kg/shank	
Row Planter	30-70 kg/row	
Transplanter	10-20 kg/row	
Grain Drill	6-22 kg/row	
Reaping or Binding	1-2 kg/row	
Combining	2-4 kg/row	
Mowing	0.5-0.8 hp/ft	
Raking	0.2-0.6 hp/ft	
Baling	1-3 hp/ton	
Field Chopping	1-3 hp/ton	

# IMPLEMENT Specific Power Requirement

Boundary	Manning roughness n, ft ^{1/6}
Very smooth surface such as glass, plastic, or	0.010
brass	
Very smooth concrete and plane timber	0.011
Smooth concrete	0.012
Ordinary concrete lining	0.013
Good wood	0.014
Vitrified clay	0.015
Shot, concrete, untroweled, and earth	0.017
channels in best condition	
Straight unlined earth canals in good	0.020
condition	
Rivers and earth canals in fair condition -	0.025
some growth	
Winding natural streams and canals in poor	0.035
condition - considerable moss growth	
Mountain streams with rocky beds and rivers	0.040-0.050
with variable sections and some vegetation	
along banks	
Alluvial channels, sand bed, no vegetation	
1. Lower regime	
Ripples	0.017-0.028
Dunes	0.018-0.035
2. Washed-out dunes or transition	0.014-0.024
3. Upper regime	
Plane bed	0.011-0.015
Standing waves	0.012-0.016
Antidunes	0.012-0.020

## IRRIGATION Manning Roughness Coefficients for Various Boundaries

#### **IRRIGATION** Lengths of Run Furrows and Corrugations

	Lengths of Furrows or Corrugations (ft)			
Slope	Loamy Sand and	Sandy Loams	Silt Loams	Clay Loams
(%)	Course Sandy			
	Loams			
0 - 2	250 - 400	300 - 660	660 - 1320	880 - 1320
2 - 5	200 - 300	200 - 300	300 - 660	400 - 880
5 - 8	150 - 200	150 - 250	200 - 300	250 - 400
8 - 15	100 - 150	100 - 200	100 - 200	200 - 300

#### IRRIGATION Permissible Velocities for Vegetated Channels

Vegetative Cover	Slope range	Permissible Velocities in fps	
_	(%)	Easily Eroded Soils	Erosion Resistant
			Soils
Bermuda grass	0-5	6	8
	5-10	5	7
	over 10	4	6
Blue grama	0-5	5	7
Buffalo grass	5-10	4	6
Grass mixture	0-5	4	5
	5-10	3	4
Annual crops for temporary protection	0-5	2.5	3.5

Note: Use velocities over 5 fps only where good cover and proper maintenance can be obtained.

Туре	General Description	Slope (%)	Storage Ratio
Straight embankment	Suited to an area with an undulating topography. A dam is built across a valley and water is impounded on the upstream side of the dam.	2 - 15	2 - 7
Rectangular balanced excavation	On slightly sloping land, the excavated earth can be used to impound some water above ground level.	< 2	1.5 - 2.5
	On higher slopes, it can be designed so that all water is stored above ground level	2 - 12	1.5 - 2.5
Semicircular embankment	Water is impounded against the slope behind a semicircular embankment	4 - 7	2.5 - 4.0
Dugout pond	The only design suited to flat areas. A reservoir is constructed by excavating the earth leaving a storage space that can be filled with water. Water is stored below ground level and pumping is required to draw out water.	Flat	1.0

# IRRIGATION Basic Reservoir Shapes of SFR

# IRRIGATION Improved Surface System Characteristics

Site and Situation Factors	Redesigned Surface Systems	Level Basins
Infiltration rate	Moderate to low	Moderate
Topography	Moderate slopes	Small slopes
Crops	All	All
Water supply	Large streams	Very large
		streams
Water quality	All but very high	All
	salts	
Efficiency	Average 60-70%	Average 80%
Labor Requirement	High, training	Low, some
	required	training
Capital requirement	Low to moderate	Moderate
Energy requirement	Low	Low
Management skill	Moderate	Moderate
Machinery operations	Medium to long	Short fields
	fields	
Duration of use	Short to long	Long
Weather	All	All
Chemical application	Fair	Good

Site and Situation Factors	Emitters
	and
	Porous Tubers
Infiltration rate	All
Topography	All
Crops	High value required
Water supply	Small streams, continuous and clean
Water quality	All - can potentially use high salt waters
Efficiency	Average 80-90%
Labor Requirement	Low, to high some training
Capital requirement	High
Energy requirement	Low to moderate
Management skill	High
Machinery operations	May have considerable interference
Duration of use	Long term, but durability unknown
Weather	All
Chemical application	Very good

# IRRIGATION Microirrigation System Characteristics

Sprinkler System Characteristics			
Site and Situation Factors	Intermittent Mechanical-	Continuous Mechanical-	Solid-Set
	Move	Move	and
			Permanent
Infiltration rate	All	Medium to high	All
Topography	Level to rolling	Level to rolling	Level to rolling
Crops	Generally shorter	All but trees	
_	crops	and vineyards	
Water supply	Small streams	Small streams	Small streams
	nearly	nearly	
	continuous	continuous	
Water quality	Salty water may	Salty water may	Salty water may
	harm plants	harm plants	harm plants
Efficiency	Average 70-80%	Average 80%	Average 70-80%
Labor Requirement	Moderate, some	Low, some	Low to seasonal
	training	training	high, little
			training
Capital requirement	Moderate	Moderate	High
Energy requirement	Moderate to high	Moderate to high	Moderate
Management skill	Moderate	Moderate to high	Moderate
Machinery operations	Medium field	Some interference	Some interference
	length, small interference	circular fields	
Duration of use	Short to medium	Short to medium	Long term
Weather	Poor in windy	Better in windy	Windy conditions reduce
	conditions	conditions than	performance, good for
		other sprinklers	cooling
Chemical application	Good	Good	Good

# IRRIGATION Sprinkler System Characteristics

### IRRIGATION Seasonal Evapotranspiration Crop Coefficient K for Irrigated Crops

Сгор	Length of Normal Growing	Evapotranspiration
-	Season or Period ^d	Coefficient K ^b
Bananas	Full year	0.80 to 1.00
Beans	3 months	0.60 to 0.70
Cocoa	Full year	0.70 to 0.80
Coffee	Full year	0.70 to 0.80
Corn (maize)	4 months	0.75 to 0.85
Cotton	7 months	0.60 to 0.70
Dates	Full year	0.65 to 0.80
Flax	7 to 8 months	0.70 to 0.80
Grains, small	3 months	0.75 to 0.85
Grain, sorghums	4 to 5 months	0.70 to 0.80
Oilseeds	3 to 5 months	0.65 to 0.75
Orchard crops		
Avocado	Full year	0.50 to 0.55
Grapefruit	Full year	0.55 to 0.65
Orange and lemon	Full year	0.45 to 0.55
Pasture crops:		
Grass	Between frosts	0.75 to 0.85
Potatoes	3 to 5 months	0.65 to 0.75
Rice	140 days	1.00 to 1.10
Soybeans	140 days	0.65 to 0.70
Sugarcane	Full year	0.80 to 0.90
Tobacco	4 months	0.70 to 0.80
Tomatoes	4 months	0.65 to 0.70
Truck crops, small	2 to 4 months	0.60 to 0.70
Vineyard	5 to 7 months	0.50 to 0.60

MEAT Storage Data			
Product	Storage temperature	Relative humidity	Storage life
	°C	%	
Bacon, fresh	+ 1 to -4.5	85 to 90	2 to 6 weeks
Beef, fresh	0 to +1	88 to 92	3 to 10 days
Beef, frozen	-15 to -25	90 to 95	9 to 12 months
Ham, fresh	0 to +1	85 to 90	7 to 12 days
Ham, frozen	-15 to -25	90 to 95	6 to 8 months
Lamb, fresh	0 to +1	85 to 90	5 to 12 days
Lamb, frozen	-15 to -25	90 to 85	9 to 10 months
Lard	+7 to +9	90 to 95	4 to 8 months
Lard, frozen	-15 to -25	90 to 95	9 to 14 months
Offal, fresh	0 to +1	85 to 90	3 to 7 days
Offal, frozen	-15 to -25	90 to 95	3 to 4 months
Pork, fresh	0 to +1	85 to 90	3 to 7 days
Pork, frozen	-15 to -15	90 to 95	4 to 6 months
Poultry, fresh	0 to +10	85 to 90	4 to 6 days
Poultry, frozen	-15 to 20	90 to 95	8 to 12 months
Rabbit, fresh	0 to +1	90 to 95	1 to 5 days
Rabbit, frozen	-15 to -25	90 to 95	0 to 6 months
Sausages, fresh	0 to +1	85 to 90	3 to 12 days
Sausages, frozen	-15 to -25	90 to 95	2 to 6 moths
Veal, fresh	0 to +1	90 to 95	5 to 10 days
Veal, frozen	-15 to -25	90 to 95	8 to 10 months
Venison, fresh	0 to +1	85 to 90	3 to 7 days
Venison, frozen	-15 to -25	90 to 95	3 to 4 months

Thermal Properties				
Product	Freezing	Specific heat	Specific heat	Latent heat
	temperature °C	above freezing	below freezing	kJ/kg
	-	kJ/kg °C	kJ/kg °C	_
Bacon, fresh	-2 -2	1.53	1.1	68
Beef, fresh	-2	3.2		231
Beef, frozen			1.67	
Ham, fresh	-2	2.53		167
Ham, frozen			1.46	
Lamb, fresh	-2	3.0		216
Lamb, frozen			1.86	
Lard		2.09		210
Lard, frozen			1.42	
Offal, fresh	-2	2.9		220
Offal, frozen				
Pork, fresh		2.13		128
Pork, frozen				
Poultry, fresh	-3	3.3	1.3	246
Poultry, frozen			1.76	
Rabbit, fresh		3.1		228
Rabbit, frozen			1.67	
Sausages, fresh	-2	3.72		216
Sausages, frozen			2.34	
Veal, fresh	-2	3.08		223
Veal, frozen			1.67	
Venison, fresh	-2	3.05		220
Venison, frozen			1.6	

### MEAT Thermal Properties

Angle of Denego		
Angle of Repose		
Emptying or Funneling	36 deg.	
Filling or Piling	20 deg.	
Density	2	
Bulk	$567 - 623 \text{ k/m}^3$	
True	1324 - 1372 kg/m ³	
Coefficient of Friction		
Steel	0.41	
Smooth Wood	0.44	
Rough Wood	0.52	
Smooth Shiny Tin	0.48	
Smooth Side Press Wood	0.55	
Across Grain of Plywood	0.53	
Rough Side Asbestos Cement Wall Board	0.37	
Heat of Vaporization	2400 - 3100 kJ/kg	
Length	6.30 - 10.75 mm	
Porosity	46 - 64%	
Specific Gravity	1.17 - 1.26	
Specific Heat	0.288 - 0.470 Kcal/kg -°C	
Surface Area	$54 - 65 \text{ mm}^2$	
Terminal Velocity	5.7 - 7.1 m/sec	
Thermal Conductivity	0.1982 - 0.2655 Kcal/hr-m-°C	
Thermal Diffusivity	0.0012130 - 0.0009055 m ² /hr	
Thickness	1.40 - 1.90 mm	
Width	2.20 - 3.92 mm	

# PADDY Physical and Thermal Properties

### PADDY Recommended Drying Temperatures

Purpose	Drying Temperature (°C)	
For seeds	43 and below	
For milling	54 and below	
For flash drying	90 and below	

### PLOWING Specific Resistance

Soil Type	Specific resistance of Plow (N/cm ² )	Specific Resistance of Soil (N/cm ² )
Sandy soil	2.1-2.5	2.0-3.2
Sandy loam	2.5-4.2	2.3-3.5
Loam	3.5-4.9	2.5-4.0
Clay loam	4.9-7.0	3.0-5.0
Clay	7.0-7.7	3.5-6.0

### PLOWING Plowing Pattern Efficiency for Square Field

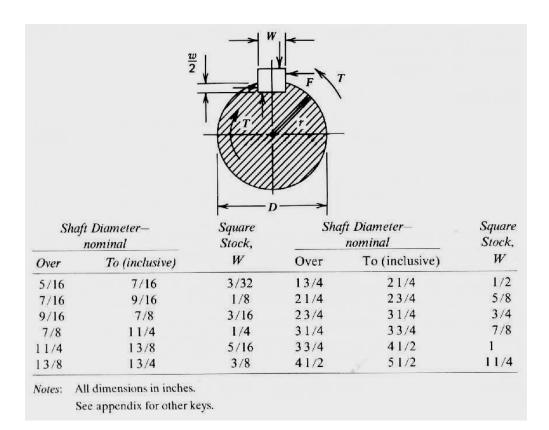
Pattern	Efficiency (%)
Headland	93.0
Continuous	95.7
Circuitous, diagonal turn strip	94.0
Circuitous, rounded corners	91.9
Circuitous, 270 turn	84.0

Appliance	Watts
Air Conditioner (evaporative - mobile)	1200-2500
Cassette Deck	30
Circular Saw (small)	1350
Coffee Grinder	75
Coffee Percolator	540
Computer (Desktop)	200
Printer (Ink Jet)	15 - 40
Drill	250-500
Dishwasher	1000-3000
Domestic Water Pump	500
Exhaust fan	40 - 75
Fan	20 - 100
Fax (standby)	10
Floor Polisher	350
Freezer	500
Heater	500 - 3000
Iron	1250
Juicer/Blender	350
Kettle or Jug	1600 - 3000
Microwave Oven	600 - 1000
Radio	15 - 60
Record Player	75
Refrigerator	300
Sewing machine	60
Stove	5000 - 10000
Television	60 - 200
Toaster	500 - 1500
Vacuum cleaner	700 - 1200
Washing Machine	600
Welder - 140A	4000
Video Recorder	17 - 50

POWER Consumption of Various Appliances (220 Volt)

#### POWER TILLER Travel Speeds

	Travel	Speed
	(cm/s)	(km/h)
Rotary tillage	25 - 50	0.9 - 1.8
Miscellaneous field work*	50 -70	1.8 - 2.5
Plowing	70 -120	2.5 - 4.3
Transportation**		15 or 25 or 30


* Puddling, inter-row cultivation, seeding, moving, etc.

** Nominally traffic law may determine legal speeds. Actual max. speeds may be set by local customs.

#### POWER TILLER Classifications

	Light	Medium	Heavy
Power	6 hp and below	7-10 hp	10-16 hp
Capacity	0.1 to 0.9 ha/day	1.0-1.5 ha/day	1.2-1.6 ha/day
Fuel Consumption	5-8 lpd	8-10 lpd	10-12 lpd

#### **POWER TRANSMISSION** Square Key Selection Guide (American National Standard)



#### POWER TRANSMISSION Pulley Arc of Contact Factor for *C*

Arc of contact*, deg.	Factor, C	Arc of contact*, C	Factor, C
180	1.00	132	0.87
174	0.99	126	0.85
168	0.97	120	0.83
162	0.96	114	0.80
156	0.94	108	0.78
150	0.92	102	0.75
144	0.90	96	0.72
138	0.88	90	0.69

* For small pulley

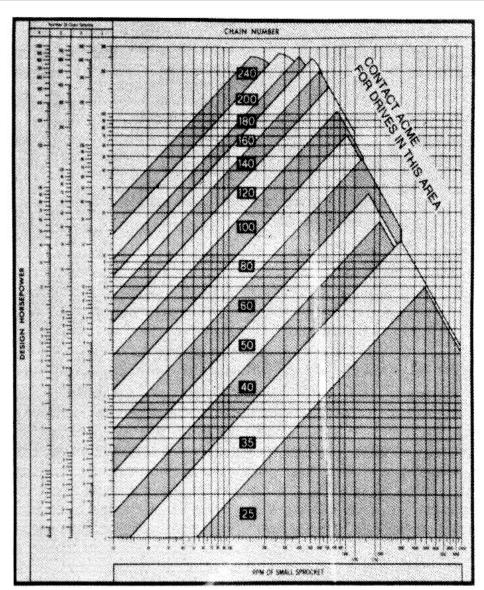
### POWER TRANSMISSION Correction Factors for Degrees of Contact on Small Pulley

Arc of contact,	Correction factor	Arc of contact,	Correction factor
degrees		degrees	
180	1.00	133	0.87
174	0.99	127	0.85
169	0.97	120	0.82
163	0.96	113	0.80
157	0.94	106	0.77
151	0.93	90	0.73
145	0.91	91	0.70
139	0.89	83	0.65

#### **POWER TRANSMISSION Plate Size Based on Width for Flat Belt**

Size of plate	Belt width, mm	Diameter of bolt, mm
0	38-51	6
1 small	64-102	6
1 large	127-152	7
2 small	178	8
3 small	254-406	10
3 large	432-508	10
4	533-610	11
5	Above 610	13

#### **POWER TRANSMISSION** Service Factors for Components of Farm Implements


Function of operating unit	Service factor
Cutting (sickle bars)	1.5
Cutting (sickle bars with counter weight)	1.3
Cutting (reels)	1.0
Pickup attachments for combines	1.0
Feeding (front cylinder beaters, feeder rolls, draper canvas, etc.)	
	1.3
Threshing, chopping, etc. (combine cylinders, corn-sheller	
cylinders, hammer-mill motors, etc.)	1.5
Separation (rear cylinder beaters, straw walkers, etc.)	1.0
Cleaning (fans, cleaning shoes, sieves, etc.)	1.0
Expelling (straw spreaders, husk blowers, etc.)	1.3
Delivery (augers, elevators, etc.)	1.3
Traction for self-propelled machines	1.3
Hydraulic system, oil pumps	1.3

		Serv	ice factors,	, 3	
Applicators	Squirrel	-cage ac	Wound	Single-	Diesel engine, 4 or
	-	otor	rotor a-c	phase	more cyl, above 700
			motor (slip	capacity	rpm
			ring)	motor	-r
Agitators	1.0-1.2	1.2-1.4	1.2	-	-
Compressors	1.2-1.4	-	1.4	1.2	1.2
Belt conveyors	-	1.4	-	-	-
Screw	-	1.8	-	-	-
conveyors					
Crushing	-	1.6	1.4	-	1.4-1.6
machinery					
Fans,	1.2		1.4	-	1.4
centrifugal					
Fans, Propeller	1.4	2.0	1.6	-	1.4
Generators and	1.2	-	-	-	2.0
exciters					
Line shafts	1.4	-	1.4	1.4	1.6
Machine tools	1.0-1.2	-	1.2-1.4	1.0	-
Pumps,	1.2	1.4	1.4	1.2	-
centrifugal					
Pumps,	1.2-1.4	-	1.4-1.6	-	1.8-2.0
reciprocating					

# POWER TRANSMISSION Service factors, S

Ctourdend she'r	D:4-1. D	M	<b>XX7: 141, XX7</b>	D'a l'anatan
Standard chain	Pitch, P	Max. roller	Width, W	Pin diameter,
number		diameter, D _r		D _p
25	6.35	3.30	3.18	2.30
35	9.53	5.08	4.76	3.58
41	12.70	7.77	6.35	3.58
40	12.70	7.92	7.94	3.96
50	15.88	10.16	9.53	5.08
60	19.05	11.91	12.70	5.94
80	25.40	15.88	15.88	7.92
100	31.75	19.05	19.05	9.53
120	38.10	22.23	25.40	11.10
140	44.45	25.40	25.40	12.70
160	50.80	28.58	31.75	14.27
180	57.15	35.71	35.71	17.45
200	63.50	39.67	38.10	19.84
240	76.20	47.63	47.63	23.80

# POWER TRANSMISSION Standard Roller Chain Dimensions, mm



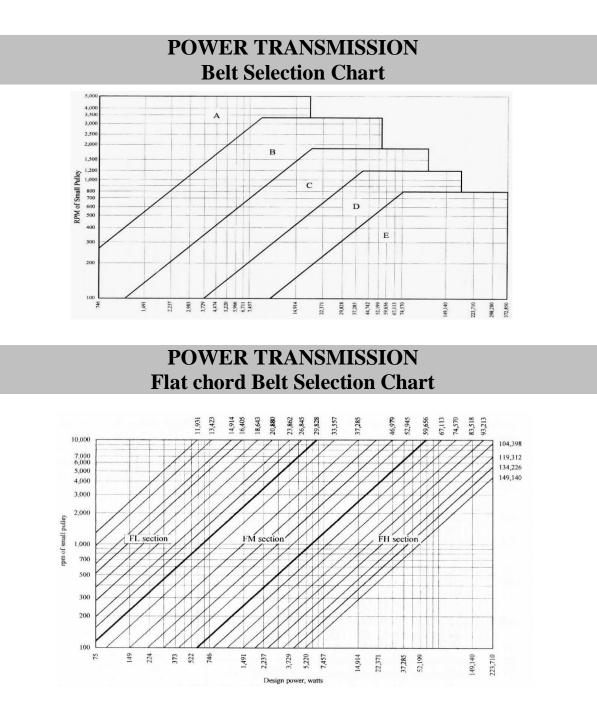
#### POWER TRANSMISSION Roller Chain Pitch Selection Chart

POWER TRANSMISSION
<b>Standard Roller Chain Sprocket Diameters for Chain Number 40</b>

Number of teeth	Pitch diameter	Outside diameter
11	45.08	50.88
12	49.07	55.02
14	57.07	63.26
15	61.08	67.36
16	65.10	71.46
17	69.12	75.55
18	73.14	79.64
19	77.16	83.73
20	81.18	87.81
21	85.21	91.88
22	89.70	95.95
24	97.30	104.09
25	101.33	108.15
26	105.36	112.22
27	109.40	116.28
28	113.43	120.33
29	117.46	124.40
30	121.50	128.45
31	125.53	132.51
32	129.57	136.56
34	137.64	144.68
35	145.75	152.78
38	153.79	160.88
39	157.83	164.93
40	161.87	168.99
41	165.91	173.04
42	169.95	177.09
43	173.98	181.14
44	178.02	185.19
45	182.06	189.24

POWER TRANSMISSION
Standard Roller Chain Sprocket Diameters for Chain Number 60

Number of teeth	Pitch diameter	Outside diameter
11	67.62	76.31
12	73.60	82.52
13	79.60	88.72
14	85.61	94.89
15	91.62	101.04
16	97.65	107.19
17	103.67	113.33
18	109.71	119.46
19	115.74	125.60
20	121.78	131.71
21	127.82	137.83
22	134.54	143.92
24	145.95	156.13
25	151.99	162.23
26	158.04	168.33
27	164.09	174.42
28	170.14	180.50
29	176.20	186.59
30	182.25	192.67
31	188.30	198.77
32	194.35	204.84
34	206.46	217.02
35	212.52	223.09
38	218.57	229.17
39	224.63	235.25
40	242.80	253.48
41	248.86	259.56
42	254.92	265.63
44	267.03	277.79
45	273.09	283.86

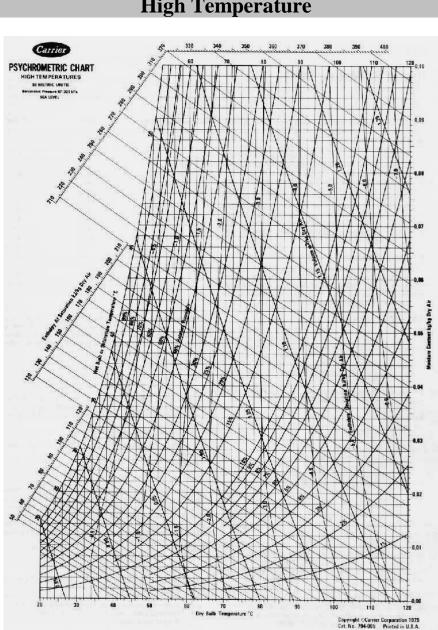

#### POWER TRANSMISSION V-Belt Specifications

Type of Cross section	b _{b'} mm	h _{b'} mm	Power range (one or more
			belts), watts
A	13	8	186-1457
В	16	10	746-18642
C	22	13	11186-74570
D	32	19	37285-186425
Е	38	25	74570 and up

### POWER TRANSMISSION V-Pulley Specifications

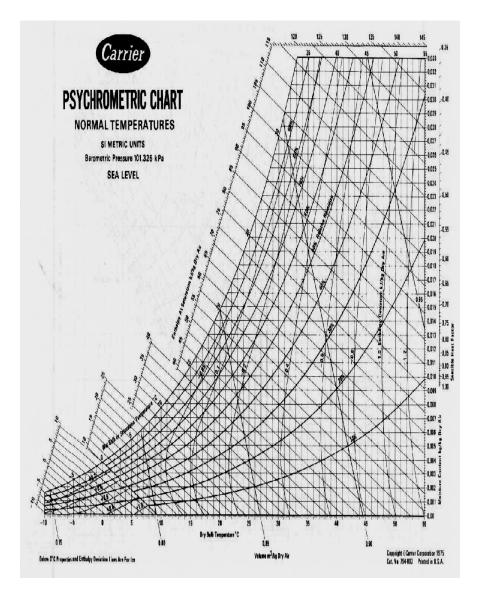
Pitch dian	Pitch diameter		_			_		
Min. recommended, mm	Range (mm)	x, mm	h _{g,} mm	a _, degrees	b _{g,} mm	E, mm	d,mm	l,mm
65	65-140 Over 140	3.2	12	34 38	12.5 12.8	+1.8 9.5 -0	12-21	25-40
115	115-180 Over- 180	4.4	15	34 38	16.2 16.5	+3.8 12.7 -0	16-30	32-50
175	175-200 201- 305 Over 305	5.1	20	34 36 38	22.3 22.5 22.7	+3.8 17.5 -0	30-50*	63-80*
300	300-330 331- 430 Over 430	7.6	27	34 36 38	32 32.3 32.6	+6.4 22.2 -0		
450	450-610 Over 610	10.2	33	36 38	38.8 39.2	+6.4 28.6 -0		

grooved V-pulleys

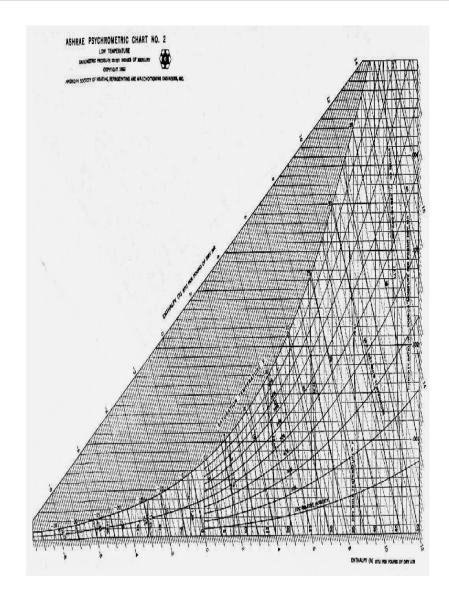



#### POWER TRANSMISSION Power Ratings for Section A V-belt

Rpm of Small		Pitch diameter of small pulley, mm								
Pulley	70	80	90	100	110	120	130	140	150	160
200	172	216	268	313	358	410	455	500	544	589
400	298	388	477	567	656	738	828	910	992	1081
600	410	537	671	798	917	1096	1171	1290	1409	1536
800	507	679	843	1007	1171	1335	1491	1648	1805	1961
1000	604	805	1014	1215	1409	1603	1797	1991	2177	2364
1160	671	910	1141	1365	1588	1812	2036	2245	2461	2670
1200	694	932	1171	1402	1633	1864	2088	2312	2528	2744
1400	776	1051	1320	1588	1849	2110	2364	2617	2863	3102
1600	850	1156	1462	1760	2058	2314	2625	2901	3169	3438
1750	902	1238	1566	1887	2200	2513	2811	3102	3393	3669
1800	917	1260	1603	1931	2252	2565	2871	3169	3460	3743
2000	992	1365	1730	2088	2431	2770	3102	3423	3729	4027
2200	1051	1454	1849	2230	2602	2968	3311	3646	3975	4280
2400	1111	1544	1961	2371	2767	3147	3512	3855	4191	4504
2600	1163	1626	2073	2498	2916	3311	3684	4042	4385	4698
2800	1215	1700	2170	2617	3050	3460	3848	4206	4549	4862
3000	1260	1775	2259	2729	3169	3594	3982	4347	4683	4981


### POWER TRANSMISSION Power Ratings for Section B V-belt

Rpm of		Pitch diameter of small pulley (mm)									
Small	120	130	140	150	160	170	185	190	200	220	240
Pulley											
200	544	626	708	790	865	947	1066	1104	1178	1298	1447
870	1782	2081	2379	2677	2968	3259	3691	3833	4116	4534	5078
400	962	1111	1268	1417	1566	1708	1931	1998	2148	2364	2647
600	1335	1551	1767	1984	2192	2401	2714	2819	3028	3333	3743
800	1670	1946	2230	2506	2774	3050	3445	3579	3840	4236	4743
1000	1976	2319	2655	2990	3318	3646	4124	4280	4601	5063	5667
1160	2207	2595	2975	3365	3721	4086	4631	4802	5153	5667	6338
1200	2267	2662	3057	3438	3825	4198	4750	4929	5287	5816	6495
1400	2528	2983	3423	3855	4288	4705	5317	5518	5913	6488	7226
1750	2938	3475	3989	4497	4996	5473	6174	6398	6831	7457	8277
1600	2774	3274	3758	4236	4705	5160	5831	6048	6465	7077	7830
1800	2990	3535	4064	4586	5086	5570	6279	6503	6942	7606	8352
2000	3192	3773	4340	4884	5421	5928	6659	6890	7345	7979	8725
2200	3363	3982	4579	5153	5705	6227	6972	7203	7681	8277	8948
2400	3512	4161	4780	5369	5936	6465	7203	7435	7830	8426	9098
2600	3632	4303	4944	5548	6115	6637	7360	7606	7979	8501	9023
2800	3729	4415	5063	5667	6234	6749	7420	7606	7979	8426	
3000	3796	4497	5145	5742	6286	6778	7397	7606	7904		




### .PSYCHROMETRIC CHART High Temperature

#### PSYCHROMETRIC CHART Normal Temperature



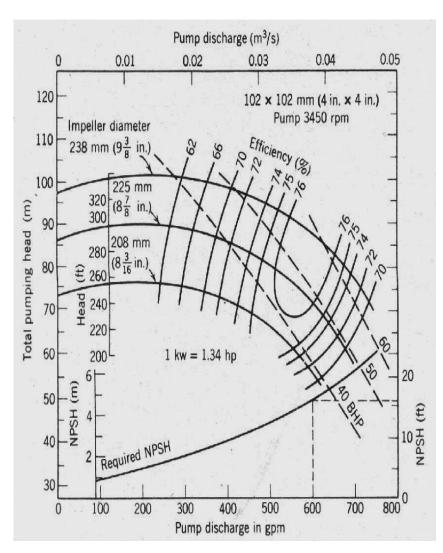
# PSYCHROMETRIC CHART Low Temperature



			<u> </u>	J J			
Type of Pump	Low C	Capacity	Medium	Capacity	High Capacity		
	LH	HH	LH	HH	LH	HH	
Centrifugal Single-	Х	X	Х	Х	Х	Х	
Stage							
Mixed Flow					Х	Х	
Axial Flow					Х		
Portable							
Submersible	Х	X	х				
Reciprocating							
Plunger		X					
Reciprocating Piston							
			х	Х	х	Х	
Gear		X	X	X			
Vane	Х	X	X				
Screw			X	X	Х	Х	
Diaphragm	Х		Х				

# PUMPS Selection Table for Pump capacity and Head

## PUMPS Overall Pump Efficiency


Pump Type	Overall Efficiency			
New electric motor and water pump	95			
Reconditioned pump and motor units	60			

Performances of water Pumps							
Pump Type	Range of Head		Efficiency	Starting	Speed		
	Suction	Discharge	(%)	Torque	(rev/min)		
	(m)	(m)		-			
Piston	7	100	80	High	30		
	10	30	80	High	30		
Double Acting Piston							
_	7	100	85	High	30		
Screw	0	5	60	Low	30-400		
Diaphragm	7	30	90	High	30		
Rope and Bucket	0	50		High	2		
Spiral Wheel	0	1	60	Low	80		
Propeller	0	7	60	Low	400-2000		

#### PUMPS Performances of Water Pumps

PUMPS Recommended Suction Pipe Diameter for Various Flow Rates

Pump Pipe	Flow Rate				
(in)	$(m^3/min)$	(lpm)			
1	0.02 - 0.05	20 - 50			
1-1/4	0.04 - 0.08	40 - 80			
1-1/2	0.07 - 0.15	70 - 150			
2	0.11 - 0.22	110 - 220			
2-1/2	0.018 - 0.36	180 - 360			
3	0.28 - 0.56	280 - 560			



PUMPS Characteristics Curve of Centrifugal Pump

**PUMPS Specific Speed** 100 Over 10 000 gpm 90 80 1000 to 3000 `500 to 1000 Efficiency (%) 3000 to 10 000 -100 to 200 70 200 to 500 60 Below 100 50 1 gpm = 0.063 L/s40 500 1000 2000 3000 10 000 5000 15 000 Specific speed Propeller (axial flow) Mixed flow Centrifugal (radial flow)

#### PUMPS

#### Loss of Head in Feet, Due to Friction per 100 Ft of 15 Year Old Ordinary Steel Pipe

Rate	d Flow		Nominal Diameter of Pipe, in.						
m3/	lps	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3
hr									
0.25	0.069	2.5							
0.50	0.139	9.4	2.4						
0.75	0.208	20.0	5.0	1.6					
1.00	0.278	35.0	9.0	2.7					
1.50	0.417		18.0	5.5	1.5				
2.00	0.556		30.3	10.0	2.5	1.2			
3.00	0.834			20.0	5.2	2.4			
4.00	1.110			30.4	8.5	4.0	1.5		
5.00	1.390				13.5	6.0	2.3		
6.00	1.670				18.0	8.5	3.2	1.0	
8.00	1.950				32.0	15.0	5.5	1.7	
10.0	2.780				50.0	23.0	8.0	2.6	1.1
12.0	3.340					32.0	11.5	3.7	1.6
14.0	3.890					43.0	15.5	5.0	2.1
16.0	4.450						20.0	6.4	2.6
18.0	5.000						25.0	7.7	3.5
20.0	5.560						30.0	9.8	4.0
25.0	6.950						44.0	14.0	6.0
30.0	8.340							20.0	8.0
35.0	9.730							26.0	11.0

Pipe coefficients: The values of friction given in the table are for commercial wrought iron or cast iron pipe of 15 years' service when handling soft clear water. For other classes of pipe, the values taken from the table should be multiplied by a coefficients below:

New smooth brass and steel pipe	= 0.6
New smooth iron pipe	= 0.7
25-year old ordinary pipe	= 1.2

#### **PUMPS** Pipe Friction Table – Galvanized Pipe

#### Pipe Friction Tables - Gelvenised Pipe

Friction	Feet per 100 feet of pipe or metres per 100 metres of pipe Friction loss can be in any units per 100 units of pipe. Allowance has been made for the normal number of pipe fittings.								
Galis/ Min	Litres/ Min	%"	¥."	1"	1%"	1%"	2″	2%"	3″
2468	9 18 27 36	12.0 40.0 79.0	3.8 10.0 20.0 35.5	1.0 3.0 6.0 10.7	1.0 2.0 3.1	- 0.9 1,4		-	
10 12 15 18	45 55 68 82	- - - -	53.0 75.0	16.2 23.5 34.8 48.0	4.5 6.1 9.2 12.5	2.0 2.7 4.0 5.5	0.6 0.8 1.2 1.9	0.4 0.5 0.7	- - -
20 25 30 35	90 114 136 159	-	-	59.2 89.0	15.5 23.0 34.0 45.0	7.0 10.5 15.8 21.0	2.4 3.6 5.3 7.2	0.8 1.4 1.7 2.3	0.4 0.7 0.9
40 45 50 55	182 205 227 250	- - -	- - -	-	57.0 70.0 85.0	27.0 33.0 39.8 48.0	9.2 11.0 14.0 16.0	3.2 4.1 4.6 5.9	1.2 1.5 1.9 2.2
60 65 70 75	273 295 318 341	- - -	• - -	- - -	- - -	56.5 65 0 75.0 85.0	19.5 22.8 26.0 30.0	6.8 7.7 9.0 10.3	2.6 3.0 3.4 3.8
80 85 90 95	364 386 409 432	• - -	- - -	- - -	- - -	<b>95</b> .7	33.5 37.2 42.0 46.0	11.5 13.0 14.5 16.2	4,4 4,9 5,5 6,1
100 110 120 130	455 500 546 591	- - -	- - -	- - -	-	- - -	46.8 60.0 71.5 83.8	17.8 21.0 24.0 28.0	6.8 8.0 9.3 11.0
140 150	636 682	-	-	-			95.0 -	32.0 37.0	12.4 14.2

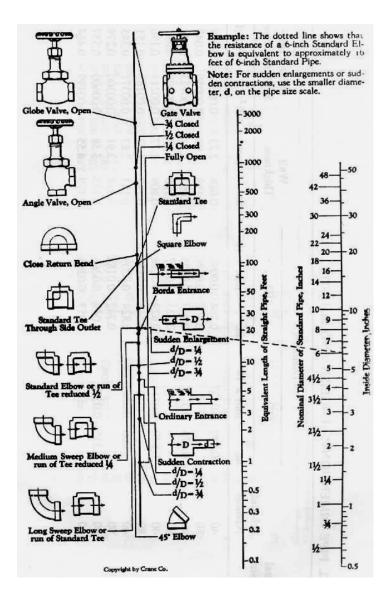
#### **PUMPS**

#### **Pipe Friction Table – Polythene Pipe/PVP Pipe**

#### Pipe Friction Tables - Polythene Pipe PVC Pipe

Feel per 100 feet of pipe or metres per 100 metres of pipe Friction loss can be in any units per 100 units of pipe. Allowance has been made for the normal number of pipe fittings.

#### Polythene Pipe -Blue or White Stripe


0100 01	Bide of Aritica Stube										
		Er %"	- nglisi %"	h Siz t"	e Ins 11/4"	ide (D 1%	la) 2″	1%"	2"	2%*	3"
Gatis/ Min	Litres Min	16	Meli 25	ric Si 32	ze O 40	utside 50	ន	PVC	> Pip	e Cla	<b>88 B</b>
2.5 5 10 15	11 23 45 68	25 90 -	3 12 40 80	1 3 10 20	1 4 8	0.5 1.5 3	0.3 0.7	0.4 1.2 2.1	0.5 0.6	0.2	
20 25 30 35	90 114 135 159	- - -		30 50 50	13 20 25 30	5 8 10 14	1.3 2 3 4	3.2 4.2 6 8	1.0 1.6 2:1 2.8	0.4 0.6 0.8 1.0	0.2 0.3 0.4 0.5
40 50 60 70	182 227 273 318		-	-	40 60 -	18 27 38 50	5 7 9 12	10 20 22 25	3.8 5.2 7.4 9.5	1.2 1.7 2.5 3.3	0.7 1.0 1.3 1.7
80 90 100 120	364 409 455 546	-	-	- - -	- - -		16 20 24 34	31 40 48 62	13 20 22 26	4.2 5.1 6.4 8.4	2.0 2.2 3.0 3.9
140 160 180 200	f36 727 818 910	t I I I.	- - -	-		- - -	46 - -	81 - -	33 40 50 60	12 15 25 27	5.1 7 9 10

# PUMPS

# Equivalent Resistance of Pipe Fittings and Valves (length of straight pipe in feet)

Nominal Pipe Diameter	90 Elbow	Tee	Gate Valve	Swing Check
(in.)				Valve
1/2	1.55	3.10	0.36	4.32
3/4	2.06	4.12	0.48	5.72
1	2.62	5.24	0.61	7.27
1-1/4	3.45	6.90	0.81	9.58
1-1/2	4.02	8.04	0.94	11.2
2	5.17	10.3	1.21	14.4
2-1/2	6.16	12.3	1.44	17.1
3	7.67	15.3	1.79	21.3

PUMPS Resistance of Valves and Fittings



#### **REFRIGERATION Properties of Some Refrigerants**

Refrigerant	Refrigerating effect,	Remarks
	Btu/lb standard cycle	
Ammonia	474.5	Highly toxic, flammable
Carbon dioxide	55.5	Nontoxic, nonflammable, high operating
		pressure
Methyl chloride	150.3	Somewhat toxic, flammable
Sulfur dioxide	141.4	Very toxic, nonflammable
Freon-12	51.1	Nontoxic, nonflammable
Freon-21	69.5	Nontoxic, nonflammable

# REFRIGERATION

# **Air Velocity Requirement During Refrigeration of Some Products**

Product	Air velocity
	m/s
Fruit	0.3 to 0.45
Vegetables	0.35 to 0.45
Meat, fresh	0.45 to 0.5
Dairy products	0.5 to 0.6
Nuts	0.35 to 0.45
Flowers	0.75 to 1.0
Chocolate products	0.2 to 0.3
Furs	0.6 to 0.75
Bottled goods	1.0 to 1.25
Canned goods	1.0 to 1.25
Wrapped and sealed products	0.75 to 0.75

# **REFRIGERATION** Average Product Storage Density

Category	Description	Density kg/m ³
1	Cauliflower	150 to 199
	Flan cases	
	Pommes dauphines	
	Ice cream	
2	Raspberries	200 to 249
	Pizzas	
	Lobsters	
	Snails	
3	Sheep, carcasses	250 to 299
	Spinach greens	
	Beef, fore quarters	
	Lobsters tails	
	Tartlets	
4	Beef, hind quarters	300 to 349
	Fruit, for retail and collectives	
	Green beans, for retail and collectives	
	Fish, for retail and collectives	
	Sweets in pots	
	Minced meat	

# **REFRIGERATION** Average Product Storage Density

Category	Description	Density kg/m ³
5	Vegetables, for retail and collectives	350 to 399
	Chickens, guinea-fowl	
	Pig, carcasses	
	Chips	
6	Briskets, loins of pork, in pallet cases	400 to 449
	Minced meat, steaks and grills	
	Geese, turkeys	
7	Back fat, in pallet cases	450 to 499
	Frozen fruit, for industry	
	Frozen vegetables, for industry	
	Frozen fish, for industry	
8	Paste for pastry	500 and over
	Meat, in case	
	Butter, in carton	
	Ham shoulder, in pallet cases	
	Chestnuts	
	Frozen fruit, in cans and pallet cases	
	Frozen eggs	
	Giblets, in cases	
	Italian style pastas, e.g. cannelloni, ravioli	

# **REFRIGERATION Percentage Moisture Content in Fresh Meats, Fruits and Vegetables**

Product	Moisture Content, % wb
Beef	
Chuck	65
Flank	45
Loin	57
Neck	62
Plate and brisket	53
Rib	59
Round	67
Shank, force	70
Shank, hind	69
Sides	60
Lamb	
Breast or chuck	56
Leg, hind (medium fat)	64
Loin	53
Neck	57
Shoulder	52
Fore quarter	55
Hind quarter	61
Mutton	
Chuck (lean)	65
Chuck (all analysis)	48
Flank (medium fat)	46
Leg, hind (lean)	67
Leg, hind (medium fat)	63
Loin (medium fat)	50

## **REFRIGERATION Percentage Moisture Content in Fresh Meats, Fruits and Vegetables**

Product	Moisture Content, % wb
Neck (medium fat)	58
Shoulder (lean)	67
Shoulder (medium fat)	62
Fore quarter	53
Hind quarter	55
Pork	
Ham, fresh (lean boned)	60
Ham, fresh (medium fat)	54
Loin chops (lean)	60
Loin, chops (medium fat)	52
Loin, tenderloin	67
Middle cuts	48
Shoulder	51
Veal	
Breast	70
Chuck	76
Leg	74
Loin	73
Shoulder	73
Vegetables	
Asparagus	94
Cabbage	91
Carrots	83
Lettuce	94
Peas	75
Potatoes, white	73
Potatoes, sweet	69
Tomatoes	94
Radishes	92

#### **REFRIGERATION**

#### **Percentage Moisture Content in Fresh Meats, Fruits and Vegetables**

Product	Moisture Content, % wb
Fruits	
Apples	83
Cherries	82
Strawberries	90
Grapefruit	88
Lemons	89
Oranges	87
Pears	83
Peaches	87

#### RICE Safe Storage Period (days) of Rough Rice at 0.5% Dry Matter Loss as Function of Temperature and Moisture

Moisture		Temperature (°C)				
(% wb)	10	20	30	40	50	
10	220.4	181.9	161.4	152.7	139.5	
15	123.2	98.2	66.0	41.0	3.0	
20	23.4	13.7	8.0	5.5	4.7	
25	15.7	7.9	4.6	3.0	2.5	
30	13.1	5.8	3.1	1.3	1.0	

#### **RICE DRYER**

# **Recommended Temperature for Drying Paddy**

Purpose	Drying Temperature (°C)
For Seeds	43 and below
For Milling	54 and below
For Flash Drying	100 and below

# RICE HULL Average Production Region

Region	Metric tons
Philippines	1, 932,846
CAR	39,064
I Ilocos	168,125
II Cagayan Valley	203,793
III Central Luzon	341,191
IV Southern Tagalog	203,504
V Bicol	149,098
VI Western Visayas	255,000
VII Central Visayas	38,004
VIII Eastern Visayas	85,225
IX Western Mindanao	74,812
X Northern Mindanao	78,019
XI Southern Mindanao	133,328
XII Central Mindanao	163,683

# **RICE HULL Physical and Thermal Properties**

Bulk density of rice hull = $0.10 \text{ g/cc}$
True density of rice hull = $1.61 \text{ g/cc}$
Apparent density of rice hull = $0.65 \text{ g/cc}$
Apparent surface area of rice hull = $3855 \text{ m}^2/\text{m}^3$
Weight of rice hull = $3.087 \text{ mg}$
Total void space fraction = 93%
Porosity of fuel = 54%
Void space fraction between rice hulls, $Eb = 85\%$
Rice hull contains $15 - 21\%$ ash (SiO2) by weight
Channel formation will occur in rice hull char at 8.5 – 9 cm/sec superficial gas velocity and
on rice hull at 20 – 23 cm/sec superficial gas velocity
Pyrolysis takes place at rice hull bed of 250 – 500 C
Bulk density of rice hull is approx. $100 - 120 \text{ kg/m}^3$
Char is 32% of the husk bulk density
1 kg of rice hull requires 4.7 kg of air for complete combustion
Tar higher heating value is $20 - 34 \text{ mJ/kg}$
Condensable hydrocarbon and $H_2O$ is 30% by weight of rice hull
At operating temperature of 1200 C carbonized rice hull will turn to ash.
Rice hull ash softening temperature is 1400 C
Slugging is formed by localized complete combustion of rice hull resulting from high localized
air flow
Formation of caves or channels will allow air to reach the carbon surface at
ER > 1.0
Rice husk has normally 12 – 16% moisture and about 20% at a very high humidity condition

#### **RICE MILL**

#### Recommended RPM for the Different Sizes of Under-Runner Disc Huller and Rubber-Roll Huller

Under-Runner Disc Huller			Rubber-Roll Huller			
Stone Diameter		Diameter	Width	RP	М	
(mm)	RPM	(mm)	(mm)	High	Low	
400	670	150	64	1320	900	
700	380	220	76	1200	900	
900	295	250	250	1000	740	

#### RICE MILL Design Requirements

Machine	Requirement
Under-Runner Disk Huller	
Abrassive coating	Not more than 1/6 to 1/7 of stone diameter
Peripheral Speed	14 m/s
Recommended	50% by weight of emery grit 14, 15% by weight of emery grit
Composition	16, 33% silicium carbide grit 16, 20% magnesite, 20% chloride
	brine
Rubber Roll Huller	
Rollers	Adjustable roll runs about 25% slower than fixed roll; smaller
	roll runs faster than larger roll
Peripheral speed	14 m/s

## RICE MILL Design Requirements

Machine	Requirement
Paddy Cleaner with Vibrating	Use 0.2 m ² of screen area per ton of paddy. For capacities up to 10 tph use
Sieves and Aspirator	$8m^3$ /minute of airflow per ton of paddy; for capacities more than 10 tph use $5 m^3$ /minute
Scalper Cleaner with one Rotating Screen and Aspirator	Use 0.2 $\text{m}^2$ of screen area per ton paddy with 14 $\text{m}^3$ /minute of airflow per ton of paddy
Scalper Cleaner with 2 Rotating	Use 0.25 m ² of screen area per ton of paddy
Screens and Aspirator	
Compartment Type Paddy	
Separator	
Capacity	40 kg brown rice per hour for long grains, 60 kg brown rice per hour for short grains.
	New models has 65 kg brown rice per hour for long grains, 100 kg brown
	rice per hour for short grains.
Abrassive Cone Whitener	
Peripheral speed	13 m/s
Abrassive Cone Polisher	Rpm is slower by 25% than abrasive whitening cone

## **RICE MILL** Capacities and Power Requirement of Rubber Roll Hullers

Size	Dimensions of the rolls (mm)		Capacity (t/h)		Horsepower requirements
	Length	Diameter	Long grains	Short grains	
4	100	220	0.9	1.25	2.5
6	150	220	1.2	1.9	4
10	254	254	2.2	3.8	6

#### **RICE MILL**

# **Capacities and Power Requirements of Disc Shellers**

Disc diameter (mm)	Capacity (kg paddy/h)	Horsepower Requirements
750	450-600	3.0
1000	700-1000	3.5
1250	1000-1400	4.0
1400	1600-2100	5.5

### **RICE MILL** Vertical Cone Whitener Size, Power Requirements, and Practices

Cone			(	Capacity (kg l	prown rice/h)		
diamete	hp ^a	Single	e pass	Doubl	e pass	Triple	pass
r (mm)		Long	Short	Long	Short	Long	Short
		grain	grain	grain	grain	grain	grain
500	4	350	420	570	680	680	800
600	7.5	550	650	890	1100	1050	1250
800	10	750	900	1230	1450	1460	1725
1000	15	1000	1200	1700	2000	1900	2300
1250	20	1350	1600	2200	2600	2600	3000
1500	25	1700	2000	2700	3200	3200	3800

^a Add 30% for whitening parboiled paddy.

# RICE MILL Operation

Operation	Equipment	By-Product
Precleaning and de-stoning	Pre-cleaner and Destoner	Foreign material such as straw, chaff,
		weed seeds, stones, metal sands
Paddy grading	Thickness or length grader	Paddy different length or thickness
Hulling or dehusking	Under-runner stone disc or rubber roll	Paddy of different length or thickness
Sifting	Plansifter	Coarse bran and germs
Husk aspiration	Husk Aspirator	Husk
Separation of paddy and brown rice	Paddy Separator	Return paddy
Brown rice grading	Thickness length or grader	Immature kernels or brown rice of different length or thickness
Conditioning of brown rice (exposing brown rice to steam and air to increase moisture content from 14 to 15%)	Conditioning tank	None
Tempering of brown rice (allow steamed brown rice to equalize to a uniform moisture content of 15%)	Tempering Bins	None
Abrasive whitening (from brown rice to undermilled rice)	Abrasive Whitener or Whitening Cone	Bran and germ
Friction whitening (from undermilled to milled rice)	Friction whitener	Fine bran
Rice polishing or refining (from milled rice to polished rice)	Polisher or Refiner	Very fine bran
Sifting	Plansifter or Gyrosifter	Brewer's rice
Rice grading 9from mixture of polished rice to whole and broken rice)	Indented Cylinder Grader	Broken grain
Sorting 9with mixed discolored grains to purely white milled rice0	Color Sorter	Discolored grain
Glazing or coating (addition of nutrients in the from of glucose talcum or lyzine)	Glazing Drum	None
Blending (whole enriched milled rice with brokens with known percentages)	Mixing or Proportioning Tanks	None
Weighing	Auto Weigher	None
Packaging	Packing Machine	None

#### RICE MILL Number of Bags to Worn Out Pair of Rubber Roller

Rubber Roll Size (in.)	Number of Bags (50 kg paddy processed per pair of rubber roll)	
2-1/2	200-250	
3	300-350	
4	400-600	
6	850-900	
8	950-1000	
10	1500-2000	

Hulling efficiency ranged from 60-88%

## **RICE MILL** Capacities and Power Requirements of Disc Shellers

Disc diameter (mm)	Capacity (kg paddy/h)	Horsepower Requirements
750	450-600	3.0
1000	700-1000	3.5
1250	1000-1400	4.0
1400	1600-2100	5.5

#### **RICE MILL**

#### Peripheral Speeds and Operating Pressures of Horizontal Whitening Machine

	Grinding Type	Friction Type
Peripheral Speed	Over 600 m/min	Below 300 m/min
Pressure	Below 50 g/cm ²	Over 200 g/cm ²

#### **RICE MILL**

#### Comparison Between Grinding-Type and Friction-Type Horizontal Whitening Machine

	Grindi	ng-Type	Friction-Type		
	Initial Stage	Middle Stage	Initial Stage	Middle Stage	
Efficiency	High	Low	Low	High	
Breakage	Small	Small	Much	Much	
Whitening Degree	High	High	Low	Low	
Glossiness	Low	Low	High	High	
Moisture Absorption	Fast	Fast	Slow	Slow	
Deformation	Partially	Partially	Full	Full	
Embryo Removed	Easy	Easy	Easy	Difficult	

Criteria	Performance Data
Threshing Recovery, percent minimum	97.0
Threshing Efficiency, percent, minimum	99.8
Losses, percent, minimum	
a) Blower Loss	1.2
b) Separation Loss	1.3
c) Unthreshed Loss	0.2
d) Scattering Loss	0.3
Purity, percent, minimum	
a) With Sifter and Fan	97.0
b) Without Sifter and With Fan	95.0
c) Without Cleaning Devices	80.0
Mechanically Damaged Grain, percent,	2.0
maximum	
Net Cracked Grain, percent, maximum	5.0
Noise, Level, [db (A) ], maximum	95.0*

### **RICE THRESHER Performance Criteria for Mechanical Rice Thresher**

• Allowance noise level for six (6) hours of continuous exposure based on Occupational Safety and Health Standards, Ministry of Labor, Philippines. 1983.

#### **RICE THRESHER**

#### Recommended Operating Speed for Various Types of Threshing Machine

Cylinder Type	Hold-On Feeding	Throw-In Feeding
Wire loop w/o concave	2650	3650
Wire loop w/ concave	2150	2900
Peg Tooth	2150	2900
Rasp Bar	2650	3650

Threshing Cylinder	
Length	540 – 1200 mm
Diameter	150 – 560 mm
Threshing Cylinder Speed	644 – 889 rpm
Engine Speed	1427 – 3223 rpm
Blower Speed	631 – 2672 rpm
Rated Power	3 – 16 hp
Fuel Consumption Rate	0.51 - 3.4 liters per hour
Actual Capacity	879 – 2548 kg per hour
Diameter to Length Ratio	0.24 - 0.73
Threshing Cylinder Peripheral Speed	4.68 - 24.8 m/s
Specific Fuel Consumption Rate	0.13 - 0.32 liters/hr-rated hp
Specific Output	275 – 1875 kg/liter of fuel

# **RICE THRESHER Design and Performance Specifications**

# SEEDER Seeds Specific Gravities

Grain	Kernel Specific Gravity
Barley	1.13 - 1.33
Corn, shelled yellow dent	1.10
Corn, yellow and white	1.27 - 1.30
Flaxseed	1.19
Grain Sorghum	1.10
Millet	1.22 - 1.26
Oats	1.11
Rice	0.95 - 1.06
Rye	1.23
Soybean	1.13 - 1.18
Wheat, hard	1.29 - 1.30
Wheat, soft	1.32

## SEEDER Seed Density per Square Meter Area

Сгор	Average Seed Density( (Seeds per m ² )
Corn for grain	6 - 12
Corn for silage	9 - 15
Sugar beets	10 -15
Beans	30 - 60
Rape	50 - 90
Peas	60 - 100
Small grain	150 - 400
Ray-grass	700 - 2000

	Seed F	Factors	Agronomic Factors		Seed Metering Requirements Average Throughout per Row ²	
	Seed size	Critical	Typical	Typical Row	(g/s)	(seeds/s)
Crop	(seeds/kg)	Length	Seeds	Spacing		
	_	(mm)	per sq. m	(mm)		
Wheat	20,000-	4.5-6.5	120-140	180	2-4	60-120
	40,000					
Sorghum	25,000-	2.5-4.5	10-25	360-910	0.3-0.8	10-26
_	40,000					
Cotton	8,000-	6-8	9-22	1,000	2.1-5	25-65
	15,000					
Sunflower	12,000-	6-10	4-6	540-750	0.3-0.5/13-20	10-15
	25,000					
Chickpea		6-9	40-60	180-750	0.2-4.8/13-20	20-30/80-120
(Dessil)	5,000-7,500					
(Kabuli)	2,000-2,800	9-11	30-40	180-750	6.2-8.5/25-34	15-20/60-80
Soybeans	3,500-6,000	5-8	20-40	590-910	6.4-13/11-22	30-60/50-100
Maize	2,000-4,500	6-12	3-5	750-910	1.7-2.8/2-3.5	6-10/7-12
Peanuts						
(Spanish)	2,000-2,200	8-12	10-20	750-910	10-20/12.5-25	20-40/25-50
					14-27/16-33	17-33/20-40
(Large)	1,000-1,500	12-18	8-16	750-910		
Broad beans	600-1,000	20-25	10-16	180-910	6.3-10/31-50	5-8/25-40

# SEEDER Crops Seed Metering Requirements

## SEEDER

#### Gravity-Type Metering Device Performance for Granulated Crystalline Fertilizer

Metering	Suitability for	Fertilizer	Ease of	Relative	Ease of	Remarks
Device	Low and High	rate Control	Cleaning	Cost	Manufacture	
	Application					
	Rates					
Adjustable					Precision	
opening with		Easy			manufacturi	Inter-row
notched,	Good	Increase the	Easy	Low	ng difficult	variation high
agitating disk		size				
Adjustable					Easy to	High inter
orifice with	Good	Easy	Easy	Low	manufac	Variation
spur wheel					ture	

### SEEDER AND PLANTER Seed Plates Requirement for Pneumatic Planter

Сгор	Recommen ded Seed spacing (cm)	No. of holes on Plate	Seed-hole Diameter (cm)	Air Suction Pressure (kPa)	Angle of Seed Hole Displaceme nt for Picking-up
					Seed (°)
Soybeans	5	32	4	4-7	11-25
Sorghum	10	16	3	3-9	22-5
Pigeon pea	10	16	3	3-9	22-5
Mustard	10	16	1.5	3-9	22-5
Okra	20	8	3	3-9	45
Maize	30	6	6	3-9	60
Groundnut	15	12	6	3-9	24
Cotton	45	4	4	3-9	90
Radish	10	16	2	3-9	22.5

# SEEDER AND PLANTER Mechanism and Types of Energy Sources

	Energy Source					
Component	Mechanical	Electrical	Pneumatic	Hydraulic	Combination	
Matarin a daviaca	Fluted roller	Spinners/disk-	Blower for	Pumping for	Fluid drilling, Pneumatic	
Metering devices	agitators, discs,	operated by electric motors	picking of seed	gels containing seeds		
	drums, cell plates, orifice	electric motors	in pneumatic planter	seeds	planting, etc.	
	plates, office		planei			
	placs	Air conveyance	Pumping gel			
Seed conveyors	Tubes, belts or	through tubes	through tubes			
beed conveyors	funnels	and nozzles	and nozzles			
	Shovels, hoes,		und nozzies			
	runners, discs, T-					
Furrow openers	slots, ridgers					
Covering devices	Seed firming,					
0	wheels, chains,					
	leveling boards,					
	soil gathering,					
	flaps, disc covers					
	Cast iron wheels,					
	steels wheels,					
Soil pressing	open center type,					
wheels	solid rubber,					
	pneumatic and					
	convex or					
I	concave shaped					
Transport and	Rigid wheel,					
drive wheels	pneumatic type					
Derrenteral	wheel					
Row markers	Disc and blade					
	type					

		<b>_</b>
Crops	Plant Spacing (cm)	Row Spacing (cm)
Groundnut	5-10	22-60
Soybean	4-7	20-60
Maize	20-25	45-60
Cotton	20-40	50-80
Peas	5-15	45-60
Rice (transplanted)	15-20	20-30
Sorghum	10-15	30-45
Sunflower	20	45-80
Wheat	3-5	15-22

# SEEDS Plant and Row Spacing of Various Crops

Indicative Cake and Meal Composition									
Product	Dry	_	teins	Fats	Nitrogen-	Crude	Ashes		
	Matter	Crude (%)	Digestible (%)	(%)	Free	(%)	(%)		
Peanut									
Cake	93.0	52.3	47.6	1.6	26.3	6.9	5.9		
Meal	91.8	42.7	38.0	1.9	25.4	17.0	4.8		
Soybean									
Cake	91.0	44.0	39.0	4.9	30.0	5.9	6.2		
Meal	90.3	45.7	42.0	1.3	31.4	5.8	6.1		
Cotton									
Cake	91.5	38.0	31.9	7.0	30.3	10.2	6.0		
Meal	89.3	42.0	35.3	0.7	30.2	9.6	6.8		

SEEDS

235

# SEEDS Grain and forage Seeds Density

Seeds	Density (kg/m ³ )
Barley	616
Bluegrass	180-385
Corn, popcorn	
Ear	900
Shelled	719
Cottonseed	410
Flaxseed	719
Grain sorghum	719-642
Oats	410
Orchard grass	180
Rice (Rough)	577
Rye	719
Timothy	577
Wheat	770
Legumes (Field Beans, Soybeans, Cowpeas, Alfalfa,	770
Clovers, Vetch)	
Long, loose hay	12.5
Baled hay	6.0
Chopped hay	11.0

# SEEDS AND GRAINS Angle of Repose

Seed/Grain	Angle of Repose, Deg			
	Filling or Piling	Emptying or Funneling		
Barley	16	28		
Corn (shelled)	16	27		
Oats	18	32		
Rice (rough)	20	36		
Rye	17	26		
Sorghum (grain)	20	33		
Soybeans	16	29		
Wheat	16	27		

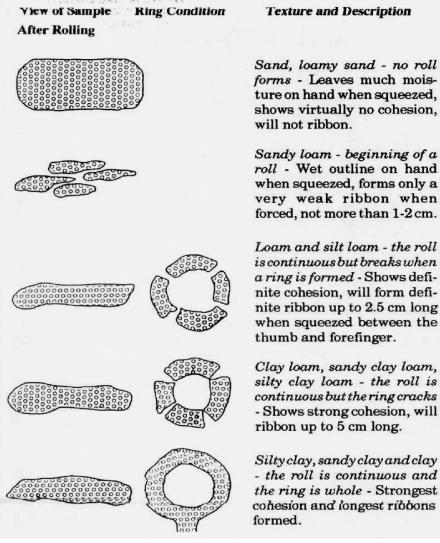
## SEEDS AND OIL Yield for Various Crops

Scientific Name	Indicative Yield of Seeds	Oil Content in the Seeds
	(t/ha)	(%)
Prutus dulcis	3.0	25 - 50
Vicia faba	6.6	1 - 2
Anacardium occidentale	1.0	38 - 46
Ricinus communis	5.0	35 - 55
Cicer arietinum	2.0	5 - 6
Theobroma cacao	3.3	50
Cocos nucifera	6000 ^a	0.63 ^b
Gossypium spp.	1.5	20
Sinapis alba	8.0	50
Vigna unguiculata	2.5	
Arachis pypogaea	5.0	36 - 50
Sesamun indicum	0.5	50
Glycine max	3.1	17 - 26
Helianthus annus	3.7	35 - 40
	Prutus dulcisVicia fabaAnacardium occidentaleRicinus communisCicer arietinumTheobroma cacaoCocos nuciferaGossypium spp.Sinapis albaVigna unguiculataArachis pypogaeaSesamun indicumGlycine max	(t/ha)Prutus dulcis3.0Vicia faba6.6Anacardium occidentale1.0Ricinus communis5.0Cicer arietinum2.0Theobroma cacao3.3Cocos nucifera6000ªGossypium spp.1.5Sinapis alba8.0Vigna unguiculata2.5Arachis pypogaea5.0Sesamun indicum0.5Glycine max3.1

Nuts

Oil (t/ha)

## SOIL **Physical Properties**


	Saturated Hydraulic	Total Pore Space	Apparent Specific
	Conductivity, $K_s^a$ (mm/h)	(% by vol)	gravity
Soil Texture			$(A_s)$
Sandy	50	38	1.65
	(25-250)	(32-42)	(1.55-1.80)
Sandy Loam	25	43	1.50
	(12-75)	(40-47)	(1.40-1.60)
Loam	12	47	1.40
	(8-20)	(43-49)	(1.35-1.50)
Clay loam	8	49	1.35
	(3-5)	(47-51)	(1.30-1.40)
Silty clay	3	51	1.30
	(0.25-5)	(49-53)	(1.25-1.35)
Clay	5	53	1.25
	(1-10)	(51-55)	(1.20-1.30)

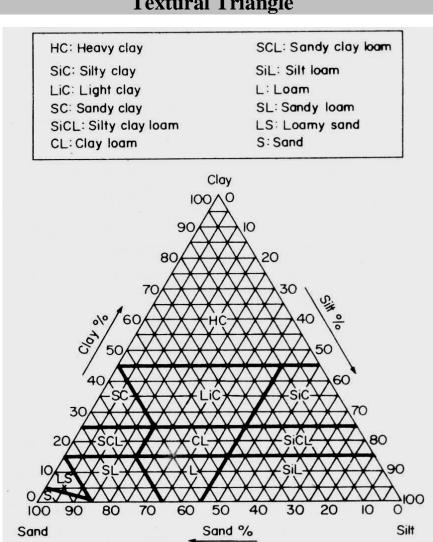
^aSaturated hydraulic conductivities vary greatly with soil structure and structural stability, even beyond the normal ranges shown. *Note*: Normal ranges are shown in parentheses.

SOIL								
Physical Properties								
Field Capacity, FCvPermanent Wilting, PWPvAvailable WaterSoil Texture(% by vol)(% by vol)								
			(% by vol)	mm/m				
Sandy	15	7	8	80				
	(10-20)	(3-10)	(6-10)	(70-100)				
Sandy Loam	21	9	12	120				
	(15-27)	(6-21)	(9-15)	(90-150)				
Loam	31	14	17	170				
	(25-36)	(11-17)	(14-20)	(140-190)				
Clay loam	36	18	18	190				
	(31-42)	(15-20)	(16-22)	(170-220)				
Silty clay	40	20	20	210				
	(35-46)	(17-22)	(18-23)	(180-230)				
Clay	44	21	23	230				
-	(39-49)	(19-24)	(20-25)	(200-250)				

^aSaturated hydraulic conductivities vary greatly with soil structure and structural stability, even beyond the normal ranges shown. *Note*: Normal ranges are shown in parentheses.

#### SOIL **Texture Determination**




forms - Leaves much moisture on hand when squeezed, shows virtually no cohesion,

roll - Wet outline on hand when squeezed, forms only a very weak ribbon when forced, not more than 1-2 cm.

Loam and silt loam - the roll is continuous but breaks when a ring is formed - Shows definite cohesion, will form definite ribbon up to 2.5 cm long when squeezed between the

silty clay loam - the roll is continuous but the ring cracks - Shows strong cohesion, will

Silty clay, sandy clay and clay - the roll is continuous and the ring is whole - Strongest cohesion and longest ribbons



SOIL Textural Triangle

Crimite 1 Mary 515									
	a		0	ŊŢ	CT	0			111117
Material	С	Н	0	N	CL	S	MC	Ash	HHV
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(Btu/lb)
Mixed	27.5	3.7	20.6	0.45	0.5	0.83	23.2	23.4	4,830
waste									
Corrugated	36.79	5.08	35.41	0.11	0.12	0.23	20.0	20.26	6,322
Newsprint	36.62	4.66	31.76	0.11	0.00	0.19	25.0	1.55	6,233
Magazines	32.93	4.64	32.85	0.11	0.13	0.21	0.16	13.13	5,466
Other	32.41	4.51	29.91	0.31	0.61	0.19	23.0	9.06	5,481
paper									
Plastics	56.43	7.79	8.05	0.85	3.00	0.29	15.0	8.59	11,586
Rubber/	43.09	5.37	11.57	1.34	4.97	1.17	10.0	22.49	8,433
Leather									
Wood	41.20	5.03	34.55	0.24	0.09	0.07	16.0	2.82	6,933
Textiles	37.23	5.02	27.11	3.11	0.27	0.28	25.0	1.98	6,595
Yard waste	23.29	2.93	17.54	0.89	0.13	0.15	45.0	10.07	4,005
Food waste	17.93	2.55	12.85	1.13	0.38	0.06	60.0	5.10	3,265

### SOLID MUNICIPAL WASTE Ultimate Analysis

Material	Density	Specific	Coef. of linear	Melting	Thermal
	kg/m ³	heat	expansion	point	conductivity
		capacity	K ⁻¹	°C	W/m K
		kJ/kg K			
Metal					
Aluminum	2700	0.890	25 x 10 ⁻⁶	660	240
Brass	8500	0.370	19 x 10 ⁻⁶	900	100
Bronze	8600	-	18 x 10 ⁻⁶	700	180
Chromium	7200	0.460	7 x 10 ⁻⁶	1850	90
Copper	8900	0.385	17 x 10 ⁻⁶	1083	390
Iron	7900	0.450	12 x 10 ⁻⁶	1535	75
Lead	11300	0.130	29 x 10 ⁻⁶	327	35
Magnesium	1700	1.025	25 x 10 ⁻⁶	650	150
Nickel	8900	0.445	13 x 10 ⁻⁶	1453	90
Silver	10500	0.235	19 x 10 ⁻⁶	961	420
Steel	7800	0.480	10 x 10 ⁻⁶	1400	35
Tin	7300	0.230	21 x 10 ⁻⁶	232	65
Tungsten	19300	0.140	4.5 x 10 ⁻⁶	3400	180
Zinc	7100	0.390	30 x 10 ⁻⁶	420	110
<b>Plastics</b>					
ABS	1070	1.450	60 x 10 ⁻⁶	-	-
Neoprene	1240	2.000	200 x 10 ⁻⁶	-	0.20
Nylon	1150	1.700	80 x 10 ⁻⁶	220*	0.30
Perspex	1190	1.500	85 x 10 ⁻⁶	100*	0.18
Polystyrene	1200	1.350	80 x 10 ⁻⁶	80*	0.17
Polythene	930	2.300	200 x 10 ⁻⁶	90*	0.40
PVC plasticized	1250	1.650	150 x 10 ⁻⁶	80*	0.16
Unplasticized	1400	1.050	100 x 10 ⁻⁶	80*	0.14

# SOLID Physical and Thermal Properties

The values for metal alloys and plastics are typical values.

* Softening temperature.

+ Decomposes.

## SOLAR ENERGY Typical Solar Transmission Factor

Type of Terrain	Solar Elevation									
	90 °	60 °	30 °	10 °	5 °					
High Mountain	0.82	0.81	0.71	0.49	0.35					
Flat country	0.77	0.74	0.61	0.35	0.22					
Large City	0.69	0.66	0.51	0.24	0.12					
Industrial Area	0.61	0.58	0.41	0.15	0.06					

## SOLAR ENERGY Operating Range of Various Solar Energy Store

Type of Store	Storage Medium	Maximum Temperature ( C )
Liquid Store	Warm water	100
	Hot water	200
	Thermal oil	430
Steam Store	Water vapor	250
Solid Matter Store	Grey cast iron	500
	Ceramics, concrete	600
	Magnesite	800
Latent Store	Salt hydrates	600
	Eutectic Mixture of Salts	850

SOLAR RADIATION
<b>Estimate from Sunshine Duration and/or Cloud Amount</b>
(Langley/Day)

J	F	М	А	М	J	J	А	S	0	N	D	Annual
361	405	442	428	352	296	267	236	252	295	297	298	327
380	422	466	494	485	377	377	372	404	418	393	349	411
418	464	512	547	510	428	377	372	356	418	393	404	433
404	495	555	593	513	433	382	375	401	431	380	387	446
380	464	512	544	510	428	377	422	404	418	393	367	435
456	511	596	608	556	471	456	415	423	486	422	383	482
257	350	387	459	404	404	404	350	330	341	266	246	350
262	330	431	391	356	309	239	236	224	305	271	285	303
216	226	278	346	362	316	314	307	286	257	224	206	278
220	285	336	391	406	362	359	306	287	298	239	219	312
228	255	325	391	356	355	309	304	288	264	182	170	286
291	326	383	459	474	404	406	350	330	341	266	246	357
364	404	446	473	408	351	298	294	281	353	315	313	359
382	407	466	494	502	349	296	217	283	388	332	319	370
310	362	449	476	403	349	296	294	283	355	320	299	350
304	338	396	421	408	351	298	294	283	307	353	315	339
22.4	100	4.40	107	1.10	100	272	272	250	270	244	222	202
		_		_						_		392
	-											424
												328 439
	-				-		-					439
						-						351
				-						-		351
												411
	-											411 436
	-											326
			-					-			_	229
							-	-			-	384
335	400	407	511	470	437	396	368	368	348	364	342	404
	361         380         418         404         380         456         257         262         216         220         228         291         364         382         310         304         334         393         294         373         366         318         277         394         393         323         177         334	361       405         380       422         418       464         404       495         380       464         456       511         257       350         262       330         216       226         220       285         221       228         257       350         262       330         216       226         291       326         364       404         382       407         310       362         304       338         304       338         304       338         304       338         304       338         310       362         304       338         304       338         310       362         3034       431         294       345         373       431         366       412         318       347         277       318         393       431         323       359         177	361         405         442           380         422         466           418         464         512           404         495         555           380         464         512           404         495         555           380         464         512           456         511         596           257         350         387           262         330         431           216         226         278           220         285         336           228         255         325           291         326         383	361 $405$ $442$ $428$ $361$ $405$ $442$ $428$ $380$ $422$ $466$ $494$ $418$ $464$ $512$ $547$ $404$ $495$ $555$ $593$ $380$ $464$ $512$ $544$ $456$ $511$ $596$ $608$ $$	3.6 $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $361$ $405$ $442$ $428$ $352$ $380$ $422$ $466$ $494$ $485$ $418$ $464$ $512$ $547$ $510$ $404$ $495$ $555$ $593$ $513$ $380$ $464$ $512$ $544$ $510$ $456$ $511$ $596$ $608$ $556$ $257$ $350$ $387$ $459$ $404$ $262$ $330$ $431$ $391$ $356$ $216$ $226$ $278$ $346$ $362$ $220$ $285$ $325$ $391$ $356$ $291$ $326$ $383$ $459$ $474$ $364$ $404$ $446$ $473$ $408$ $382$ $407$ $466$ $494$ $502$ $310$ $362$ $449$ $476$ $403$	1         1         1         1         1         1         1         1           361         405         442         428         352         296           380         422         466         494         485         377           418         464         512         547         510         428           404         495         555         593         513         433           380         464         512         544         510         428           456         511         596         608         556         471           -         -         -         -         -         -           257         350         387         459         404         404           262         330         431         391         356         309           216         226         278         346         362         316           220         285         325         391         356         355           291         326         383         459         474         404           -         -         -         -         -         -         -	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

SOLAR RADIATION
<b>Estimate from Sunshine Duration and/or Cloud Amount</b>
(Langley/Day)

Place	J	F	М	А	М	J	J	А	S	0	Ν	D	Annual
Puerto Princesa	347	380	436	472	406	362	353	355	356	350	332	315	371
Romblon	344	384	433	487	456	393	382	365	371	376	344	320	389
San Francisco	367	412	451	472	475	370	370	370	361	337	353	331	389
San Jose	365	410	446	460	438	394	356	359	352	374	376	356	391
Santa Cruz	294	366	448	472	425	472	372	372	358	334	304	285	375
UPLB	342	416	486	545	492	439	400	381	359	371	322	294	406
REGION V													
Daet	268	309	382	412	414	362	335	303	309	301	265	242	325
Legaspi	232	237	286	307	301	274	238	218	221	231	213	197	246
Masbate	238	283	338	367	351	284	352	238	248	257	240	217	276
Naga	186	203	287	303	305	235	235	235	226	211	191	180	223
Sorsogon	180	181	256	307	309	266	266	266	259	242	174	210	243
Virac	265	302	361	398	378	346	361	303	296	297	265	245	314
REGION VI													
Iloilo	352	393	446	460	400	356	356	301	352	338	344	325	369
Roxas	328	390	433	499	460	397	397	400	390	369	374	320	397
Victorias	312	361	424	461	418	357	358	374	361	353	321	292	366
REGION VII													
Cebu	306	329	392	402	359	298	298	301	298	340	315	299	328
Dumaguete	344	366	430	438	394	350	352	356	354	379	351	303	368
Ormoc City	202	269	292	341	300	296	239	340	236	281	258	244	367
Tagbilaran	306	329	430	441	397	354	354	359	354	340	315	299	357
REGION VIII													
KEGION VIII													
Borongan	246	267	328	380	341	336	298	300	292	277	256	241	297
Calbayog	278	302	365	399	380	336	298	339	330	313	289	272	325
Catarman	295	331	381	438	402	377	339	339	330	344	285	267	344
Catbalogan	278	302	403	419	419	336	298	300	292	313	289	272	327
Maasin	254	273	332	341	336	332	294	298	294	283	262	248	296
Tacloban	282	304	368	399	377	334	296	298	292	317	291	276	320
REGION IX													
Dipolog	275	294	361	368	340	310	312	316	314	304	302	269	314
Jolo	288	304	321	330	319	295	301	312	307	310	292	279	305
Zamboanga	304	328	347	349	324	302	308	307	314	318	303	294	317

### SOLAR RADIATION Estimate from Sunshine Duration and/or Cloud Amount (Langley/Day)

Place	J	F	М	А	М	J	J	А	S	0	Ν	D	Annual
REGION X													
Butuoan	275	294	338	344	340	333	312	316	338	304	281	269	312
Cag. de Oro	292	307	352	368	335	310	310	307	307	308	294	281	314
Hinatuan	279	298	338	344	338	331	310	316	314	372	285	273	287
Malaybalay	300	320	361	368	314	308	275	281	314	304	281	269	308
Surigao	271	292	314	346	342	314	314	318	312	382	275	265	305
REGION XI													
Davao	283	315	337	342	317	295	299	305	307	306	294	277	306
Gen. Santos	322	356	361	363	347	318	322	331	335	336	313	300	334
REGION XII													
Cotabato	309	362	351	349	327	311	313	321	314	315	307	296	320

#### SPRAYER Pest Control Machines, Types of Chemicals, and Diameter of Particels

Machines	Chemicals	Size distribution (µm)	Mean diameter of particles
			(µm)
Sprayer	liquid	150-440	200
Mist blower	liquid	30-100	40
ULV or LV sprayer	liquid	40-140	70
Fog machine	liquid	0.5-50	4
Sprinkler	liquid	1,500-3,000	2,000
Duster	powder	0.5-100	10
Granular spreader	granule	297-1,680	850

 $\mu$ m means 10⁻⁶ m

#### SPRAYER

#### CLASSIFICATION OF SPRAYING METHODS WITH SPRAYING VOLUME

spraying method	spraying volume (l/ha)	spraying machine
high volume	more than 500	power sprayer
semi low volume	100-500	mist machine
low volume	30-100	low volume sprayer
very low volume	6-30	
ultra low volume	less than 6	ULV sprayer

# SPRAYER Characteristics and Types

Type of agricultural chemicals	Characteristics
emulsion	Liquid. The main chemical, being insoluble in water, is dissolved by organic solvents; emulsifiers and adjuvants are added.
water solution liquid	Liquid. The main chemical is readily soluble in water. Surface activating agents, antifreeze agents and others are added.
oil solution liquid	Liquid. The main chemical is soluble in water. An organic solvent is used for dilution.
water dispersive powder	Powder. The main chemical is insoluble in water. Surface activating agents are increasers are added. Used as a suspension.
flowable sol	Solid. The main chemical is almost insoluble in solvents. Used as a suspension.
water soluble powder	Powder. The main chemical is water soluble and is mixed with a water-soluble increaser and adjuvant.
DL type powder	DI means Drift-Less powder. It has little drift and scattering. The mean diameter of the powder is about $25\mu m$ . The quantity of grains with a diameter of under $10\mu m$ is less than 20 %. Its apparent specific gravity is a little higher than standard-type powder and its fluidity is good.
flow dust (FD)	Powder for horticulture. Its mean diameter is 2µm and its spreading quantity is about 300-500g/10a.
micro grain (F)	Powder protects the operator and prevents environmental contamination. Its mean diameter is in the range of 60-210µm.
dust	The grain size differs according to the objective. For rice plants, the diameter is in the range of 0.8-1.0 mm.
micro capsule	The active ingredients of chemicals are covered with a natural polymer (gelatin) or a synthetic polymer (polyvinyl alcohol). The diameter ranges from 5-6 to 500- 600µm. The ingredients are extracted from the capsule under prescribed conditions.
aerosol	The active ingredients are dissolved by liquefied gas (Freon) and packed in a pressure vessel.
fumigant	The active ingredients evaporate at normal or high temperatures or with water.

	0110011	8 4114 1 1000	294111011411		
Grain			Constant		
	А	В	С	D	Е
Beans, edible	1334.93	14.964	120.098	0.480920	0.066826
Corn, Yellow dent	620.56	16.958	30.205	0.379212	0.058970
Peanut, Kernel	506.65	29.243	33.892	0.212966	0.034196
Peanut, Pod	1037.19	37.093	12.354	0.183212	0.026383
Rice, Rough	1181.57	21.733	35.703	0.325535	0.046015
Sorghum	2185.07	19.644	102.849	0.391444	0.050970
Soybean	275.11	114.967	24.576	0.375314	0.066816
Wheat, Durum	1831.40	18.077	112.350	0.415593	0.055318
Wheat, Hard	1052.01	17.609	50.998	0.395155	0.056788
Wheat, Soft	1442.54	23.607	35.662	0.308163	0.042360

#### **STORAGE** Chung and Pfost Equilibrium Constant

#### STORAGE

#### Safe Storage Life at Different Moisture Levels and at Different Grain Temperatures (Beyond these limits, grain quality rapidly deteriorates)

Grain temperature	S	Safe Storage Life (days) at Indicated Moisture Content									
(°C)	14%	15.5%	17%	18.5%	20%	21.5%					
38	8	4	2	1	0						
32	16	8	4	2	1	0					
27	32	16	8	4	2	1					
21	64	32	16	8	4	2					

	nygroscopic Equilibrium for Paddy						
Moisture		Percent relative humidity at temperature of					
(%)	21°C						
10	45.4	46.8	48.2	49.6	51.0	52.4	53.9
12	61.1	52.2	63.3	64.4	65.5	66.6	67.7
14	74.0	74.8	75.6	76.3	77.1	77.8	78.6
18	90.1	90.4	90.6	90.9	91.2	91.5	91.8
20	94.2	94.4	94.6	94.7	94.9	95.0	95.2

### STORAGE Hygroscopic Equilibrium for Paddy

## STORAGE Recommended Level of Moisture for Rice Storage

Purpose	Duration	MC
	(months)	(% wb)
Seeds	11-23	13
	4-6	12
	7-12	11
Food	1-3	14
	4-6	13.5
	7-12	13
	0.5-0.75	18

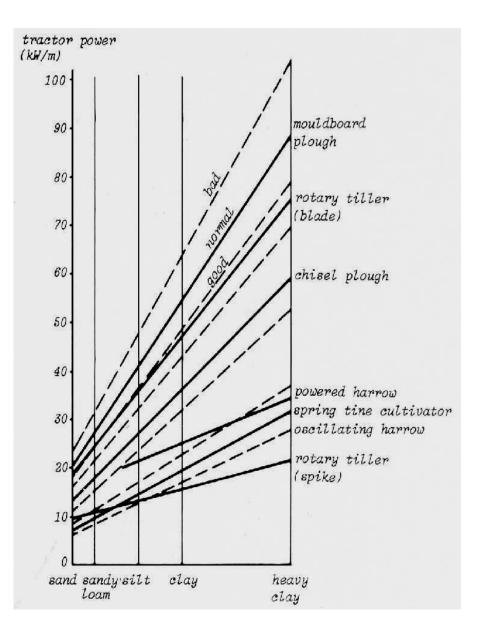
SUBSTANCES				
Heat of Combustion				
Substance	Heating Value, Btu per lb, dry	Substance	Heating Value, Btu per lb, dry	
Petroleum coke	15,800	Rags (linen)	7,132	
#1 Gilsonite selects*	17,699	Rags (cotton)	7,165	
Asphalt	17,158	Cotton batting	7,114	
Pitch	15,120	Corrugated fiber carton	5,970	
Soot (from oil)	11,787	Newspaper	7,883	
Soot (from smokeless coal)	7,049	Wrapping paper	7,106	
Soot (Island Creek)	5,425	Oats	7,998	
Soot (Red Jacket Thacker)	10,569	Wheat	7,532	
Soot (Crystal Block Winifrade)	4,951	Oil (cottonseed)	17,100	
Wood sawdust (oak)	8,493	Oil (lard)	16,740	
Wood sawdust (pine)	9,347	Oil (olive)	16,803	
Wood sawdust (pine)	9,696	Oil (paraffin)	17,640	
Wood sawdust (hemlock)	7,797	Oil (rape)	17,080	
Wood sawdust ( fir)	8,249	Oil (sperm)	18,000	
Wood sawdust (spruce)	8,449	Candy	8,096	
Wood shavings	8,248	Butter	16,560	
Wood shavings ((hardwood auto bodies)	8,878	Casein	10,548	

## **SUBSTANCES** Heat of Combustion

	Heating		Heating
Substance	Value, Btu	Substance	Value, Btu
	per lb, dry		per lb, dry
Wood bark (spruce)	8,817	Egg white	10,260
Wood bark (hemlock)	8,753	Egg yolk	14,580
Wood bark (fir)	9,496	Fats ( animal)	17,100
Wood bark (fan)	7,999	Hemoglobin (blood)	10,620
Brown skins from peanuts	10,431	Waste hemp hurds	7,982
Corn on the cob	8,100	Cottonseed hulls	8,600
		(fusion 2342 F)	
Rags (silk)	8,876	Pecan shells	8,893
Rags (wool)		Coffee ground	10,058
		Pecan shells (few meats	
		left in them	10,144

## SUBSTANCES Specific Heat

Materials	Temperature,	Specific Heat,
	°F	Btu/(1b) (°F)
Air	68	0.24
Ammonia (anhydrous)	32	0.983
Brine (calcium chloride, density 1.2	32	0.71
Concrete	-	0.25
Glass	50-122	0.16
Ice	32	0.50
Ice Cream Mix (12% Fat)	35	0.78
Milk	32-142	0.935
Steel	50	0.12
Water	55	1.00
Wood	50	0.44


### SUNFLOWER OIL (SFO) BLEND WITH DIESEL FUEL (DF) PROPERTIES (Gross Heating Value and Kinematic Viscosity)

Blend	Gross Heating Value	Kinematic Viscosity (cSt) at		
	(MJ/kg)	40°C	60°C	80°C
Diesel Fuel	45.28	2.91	2.12	1.22
SFO, Raw oil	41.45	18.60	11.21	4.90
SFO, Refined Oil	39.42	31.31	17.53	7.49
SFO/DF:				
20/80	44.65	5.53	3.66	1.99
30/70	43.72	7.26	15.21	7.21
50/50	42.47	9.43	6.17	3.25
60/40	41.42	11.57	7.21	3.94
70/30	40.75	16.16	9.32	4.43
80/20	40.10	17.84	13.09	4.89
90/10	39.46	23.05	14.02	5.89

Typical	TOOLS Typical Tempering Temperatures for Various Tools			
Degrees °F (°C)	Temper Color	Tools		
380 (193)	Very light yellow	Tools that require maximum hardness: lathe centers and cutting tools for lathes and shapers.		
425 (218)	Light straw	Milling cutters, drills and reamers.		
465 (241)	Dark straw	Taps, threading dies, punches, dies, and hacksaw blades.		
490 (254)	Yellowish brown	Hammer faces, shear blades, rivets sets, and wood chisels		
525 (274)	Purple	Center punches and scratch awls.		
545 (285)	Violet	Cold chisels, knives, and axes.		
590 (310)	Pale blue	Screwdrivers, wrenches, and hammers.		

# TOOLS

**TRACTOR Power Requirement per Meter of Tillage Implement** 



## **TRACTOR Transmission Efficiency**

Location	% of the Net Engine Power
Transmission Box	0.96 - 0.98
Power Take Off Power	0.87 - 0.90
Drawbar Power	0.75 - 0.81
Axle Power	0.82 - 0.87

#### **TRACTOR** Coefficient of Traction of Wheel Tractor

Condition of Ground Surface	Coefficient of Traction	Slippage
	(%)	(%)
Concrete road	75-57	5
Dry clay	66-52	16
Sandy loam	58-45	16
Dry fine sand	42-29	16
Gravel road	41-32	5
Meadow	41-33	8

## **TRACTOR** Plow Capacities of Tractor

Engine Horsepower	Number of Moldboard Plow Bottoms
8 - 12	One 12 in.
15 - 20	One 16 in. or two 10 in.
25 - 30	Two 14 in.
35 - 45	Three 14 in. or 16 in.
50 - 60	Four 14 in.
65 - 75	Five 16 in.
80 - 130	Six 16 in.

Condition of Ground Surface	Coefficient of Rolling Resistance	
	Wheel type	Crawler type
Asphalt road	0.04	0.05
Dry hard ground	0.07	0.07
Hard grassland	0.10	0.07
Mown meadow	0.01	0.08
Soft sandy road	0.12	0.10
Field just after cultivation	0.20-0.30	0.10-0.12
Deep mud	0.20-0.30	0.10-0.12
Fine sand	0.30-0.40	0.10

## **TRACTOR Coefficient of Rolling Resistance**

#### TRACTOR Power Take-Off Shaft Dimension

	Type 1	Type 2	Type 3
Nominal diameter	35 mm	35 mm	45 mm
Standard Operating Speed	5540 rpm	1000 rpm	1000 rpm
No. of Splines	6	21	20

## TRACTOR PTO Thrust Forces

	РТО	Power	Thrust	
	KW	hp	KN	Lbf
35 mm PTO	15-25	20.1 - 33.5	7	1575
	Over 25-40	33.5 - 53.6	9	2025
	Over 40-60	53.6 - 80.5	11	2475
	Over 60-110	80.5 - 147.5	13	2925
	Over 110	147.5	14	3150
45 mm PTO	Over 110	147.5	18	4050

#### TRACTOR Tractor Requirements for a Chisel Plow (PTO hp/shank)

Depth (cm)	Speed (Kph)	PTO hp/shank			
(cm)	(Kph)	Sandy Loam	Loam	Clay	
16	8	3.0	6	10	
20	8	4.5	8	14	
25	8	5.5	10	17	
30	8	6.5	12	20	

## TRACTOR Tractor Requirements for a Field Cultivator (PTO hp/shank)

Depth	Speed	PTO hp/shank			
(cm)	(Kph)	Sandy Loam Clay			
13	8	2.7 3.7 5			

#### TRACTOR Tractor Requirements for a Subsoiler (PTO hp/shank)

Depth	Speed	PTO hp/shank		
(cm)	(Kph)	Loam	Clay	
30	6.5	17	25	
45	6.5	26	38	
60	6.5	35	50	

#### **TRACTOR** Tractor fuel Consumption

Tractor Type	Fuel consumption (gal per hour-rated drawbar hp)
Wheel-type, gasoline	0.085
Wheel-type LP gas	0.105
Wheel-type, diesel	0.065
Track-type, gasoline	0.090
Track-type, diesel	0.075

#### TRACTOR

## Standard Three-Point Free-Link Attachment for Hitching Implement to Agricultural Wheel Tractors

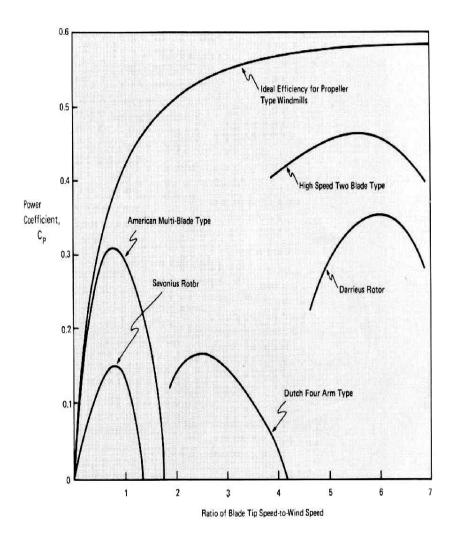
	Categ	ory I	Catego	ory II	Categ	ory III	Categ	ory IV
	15-35	KW	30-75	KW		58 KW		00 KW
Upper Hitch Point	min	max	min	max	min	max	min	max
Width Inside	44.5	-	52.3	-	52.3	-	65	-
Width Outside	-	85.9	-	95.3	-	96.3	-	132
Clearance radius for upper link	57.2	-	57.2	-	57.2	-	76.2	-
Hitch pin hole diameter	19.3	19.56	26.65	25.91	32.0	32.26	45.2	46.5
Lower Hitch Point								
Stud diameter	21.84	22.10	28.19	28.45	36.32	36.58	49.7	50.8
Linchpin hole distance	38.86	-	46.52	-	48.52	-	68	-
Linchpin hole diameter	11.68	12.19	11.68	12.19	11.68	12.19	17.5	18
Lower hitch point spread	681.0	684.3	822.5	625.5	963.7	966.7	1165	1168
Clearance radius to lower link	63.5	-	73.2	-	82.6	-	82.6	-
Implement encroachment in front of lower hitch point if implement extends laterally behind tire		12.7		12.7		12.7		12.7
Implement Mast Height	4	57	2	483	5	59	6	86

# VEGETABLES How to Freeze

Asparagus	Wash very well. Cut about 2 inches long and remove the tender portion of stalks. Tie loosely into bunches. Boil blanch small stalks for 2 minutes and large stalks for 4 minutes. Cool at once, drain and dry. Pack, seal, label and freeze.
Carrot	Choose very young carrots. Wash very well to get rid of dirt. Scrape the skin. Small carrots may be frozen whole while large ones may be cut into sticks or cubes depending on intended use. Boil blanch whole carrots for 5 minutes and cut or sliced ones for about 2 minutes. Cool at once, drain and dry. Pack, seal, label and freeze.
Cauliflower	Choose white, well-formed heads. Wash very well. Cut stem close to the head and break into flowerets about 1 inch across. Soak in salt solution (1/4 cup of salt per quart of water) to remove insects. After 30 minutes, wash again to remove salt. Boil blanch for 3 minutes. Cool immediately, drain and dry. Pack, seal, label and freeze.
Corn, Cut	Remove husk and silk. Wash and boil blanch for 6-10 minutes depending on size of ears. Cool at once. Cut down corn from cobs halfway through their kernels and milk juice. Pack in rigid containers. Leave ½-inch head space. Cover the containers, label and freeze.
Corn, on the cob	Remove husk and silk. Wash and boil blanch for 6-10 minutes depending on size of ears. Cool at once. Wipe dry. Pack in plastic bags or cellophane and freeze.
Green Beans (Abitsuelas)	Wash very well. Sort out according to size. Small <i>abitsuelas</i> may be frozen whole while the large ones should be cut into pieces, 1-2 inches long. Boil blanching will take 3 minutes while steam blanching will take 4 minutes. Cool at once. Drain very well and dry. Pack, seal, label and freeze.
Eggplant	Wash very well. Cut into 2-inch sticks or 1-inch cubes. Immediately, soak in water to prevent discoloration. It is advised to have a bowl of water ready where pieces are dropped as they are cut. Boil blanch for about 3 minutes. Cool at once. Drain very well and dry. Pack, seal and freeze.
Hyacinth Beans (Bataw)	Wash very well. Remove the stems. Sort out according to size. Boil blanch for 3 minutes. Steam blanch for 4 minutes. Cool at once. Drain very well and dry. Pack, seal, label and freeze.
Leafy Greens	Wash very well. Discard bruised leaves. Boil blanch for 2 minutes. Cool at once. Drain very well and dry. Pack, seal, label and freeze.
Okra	Choose young tender pods. Remove the stems. Sort out according to size and cut into two if large. Boil blanch for 2 minutes or steam blanch for 3-1/2 minutes. Cool at once. Drain very well and dry. Pack, seal, label and freeze.

## WAREHOUSE Optimum Recommended Stack Height

Type of grain	Stack height in layers	Stack height in meters
Wheat, barley and Maize	18	4.57
Paddy	16	4.27
Rice	16	4.27

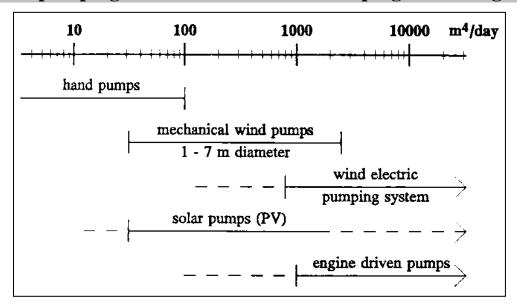

## WAREHOUSE Recommended Dimension Based on Capacity

Number of Cavans	Dimension
10,000	10 m x 30 m
50,000	20 m x 48 m
100,000	25 m x 78 m
500,000	75 m x 142 m

	Design values for various Airio	ons		
Airfoil	Geometrical Description	(Cd/Cl ) min	Angle of Attack	Cl
Sail and Pole		0.1	5	0.8
Flat Steel Plate		0.1	4	0.4
Arched Steel Plate	f $f/c = 0.70$ f/c = 0.10	0.02 0.02	43	0.9 1.25
Arched Steel Plate with Tube on Concave Side	f/c = 0.07 f/c = 0.10 d < 0.1 c	0.05 0.05	5 4	0.9 1.1
Arched Steel Plate with Tube on Convex side	<b>6</b> f/c = 0.1	0.2	14	1.25
Sail Wing	cloth or sail steel cable tube	0.05	2	1.0

## WIND ENERGY Design Values for Various Airfoils





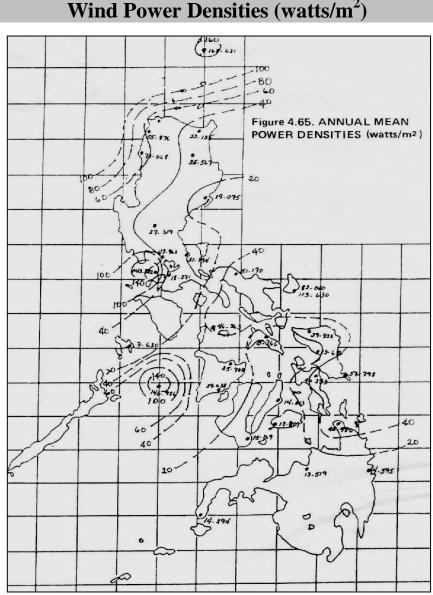

#### WIND ENERGY

#### Tip Speed Ratio for Horizontal Wind Machines for Various Number of Blades

Tip Speed Ratio	Number of Blades
1	6-20
2	4-12
3	2-6
4	2-4
5 - 8	2-3
8-15	1-2

#### WIND ENERGY Windpumping Niches Versus Other Pumping Technologies




WIND ENERGY
Mean Monthly Wind Velocity (m/s)

Station	J	F	Μ	Α	Μ	J	J	Α	S	0	N	D
Alabat	4	4	3	3	2	2	3	2	2	3	5	4
Aparri	4	4	3	3	3	3	3	3	3	4	4	4
Baguio	2	2	2	2	2	3	3	3	2	3	3	2
Basco	5	5	5	4	4	4	5	5	4	4	6	6
Borongan	3	3	2	2	2	2	2	2	2	2	2	2
Cagayan de Oro	1	1	1	1	1	1	1	1	1	1	1	1
Calapan	2	2	3	3	3	2	2	2	2	2	3	3
Calayan	3	3	3	3	2	2	2	3	3	3	4	4
Catbalogan	2	2	2	2	2	2	2	2	2	2	1	2
Cebu	3	3	3	3	2	2	2	2	2	2	2	3
Cuyo	9	8	6	5	2	2	2	4	3	5	7	9
Daet	3	3	3	3	2	2	2	2	2	2	4	4
Dagupan	3	3	4	4	3	3	3	3	3	3	3	3
Davao	3	3	3	2	2	2	2	2	2	2	2	2
General Santos	3	3	3	3	3	3	2	3	3	3	3	3
Iba	2	3	3	3	2	3	2	3	2	2	2	2
Iloilo	6	6	5	5	4	3	4	4	3	3	4	5
Infanta	3	3	3	2	2	2	2	2	2	2	4	4
Itbayat	3	4	3	3	2	3	3	3	3	3	4	4
Laoag	3	3	3	3	3	3	3	3	3	3	4	4
Legaspi	4	4	4	4	3	3	3	3	3	3	4	4
Lucena	3	3	3	3	3	3	3	3	3	3	3	3
Lumbia	3	3	3	3	3	2	2	2	2	2	2	3
Masbate	3	3	3	2	2	3	3	3	3	3	3	3
Munoz	4	4	3	3	2	2	2	2	2	3	3	3

	I	lean	INIOI	iuny	VV 111	u ve		<b>y</b> (111/	<b>S</b> )			
Station	J	F	Μ	Α	М	J	J	Α	S	0	N	D
Pag-asa Palawan	4	5	3	3	4	4	5	6	4	4	4	5
Puerto Princesa	2	2	2	2	1	1	1	1	1	1	2	2
Romblon	4	4	4	3	3	3	3	4	3	3	4	4
Roxas	4	3	3	3	3	2	2	2	2	3	3	4
San Francisco	3	3	2	2	2	3	3	3	3	2	3	3
Tacloban	3	3	3	3	3	3	3	3	3	3	3	3
Tuguegarao	2	2	2	2	2	2	2	2	2	2	2	2
Vigan	4	4	3	3	3	3	3	3	3	3	3	3
Virac	3	3	3	3	3	3	3	3	3	3	3	3
Zambaonga	2	2	2	2	2	2	2	2	2	2	2	2

## WIND ENERGY Mean Monthly Wind Velocity (m/s)

Source: Climatological Division, PAG-ASA, Philippines



WIND ENERGY Wind Power Densities (watts/m²)

## WIND ENERGY Beufort Scale

Description of Wind	Observation	Speed, Mph
Calm	Smoke rises vertically.	0.1
Light air	Smoke drifts slowly.	1-3
Light breeze	Wind felt on face. Leaves rustle.	4-7
Gentle breeze	Leaves and small twigs in constant motion.	
	Flags or streamers extend.	8-12
Moderate breeze	Raises dust. Small branches move.	13-18
Fresh breeze	Small trees begin to sway.	19-24
Strong breeze	Large branches in motion.	25-31
	Umbrellas difficult to hold	
Moderate gale	Whole trees in motion.	32-38
Fresh gale	Breaks twigs off trees.	39-46
	Difficult to walk.	
Strong gale	Slight structural damage to roofs and signs	47-54
	possible.	
Full gale	Trees uprooted. Considerable structural	55-63
	damage occurs.	
Storm	Widespread damage	64-72

# WOOD Specific Gravity of Various Wood Specie

Specie	Specific Gravity
Coconut Wood Hard Outer layer	0.59
Coconut Wood Inner portion	0.26
Apitong	0.82
Yaka- Gisok	0.76

#### WOOD

# **Approximate Moisture Content Range for Various Timber Uses**

Uses	Moisture Content				
	(%)				
Furniture	11 - 17				
Flooring	11 – 17				
Framing Timber (houses)	15 - 20				
Joinery Interior	12 – 16				
Mouldings	12 –1 6				
Sporting goods	8-12				
Agricultural Implements	15 - 20				
Boxes and Crates	15 – 18				
Pole and Railroad ties	25 - 30				
Motor Body Building	15 – 18				
Veneer and Plywood	8-14				
Weatherboard	15 - 17				

## WOOD Uses of Coconut Timber for Building Construction

Uses	Portion of Coconut Timber
Post	Solid – round form
Flooring	Hard
Trusses	Hard
Floor Joist	Hard
Stairs and Railings	Hard
Door Panels	Hard
Rafters	Hard
Window Jambs	Hard
Sidings	Hard with soft
Ceiling	Hard with soft
Jalousies	Hard with soft
Studs	Medium
Purlins	Medium
Roof shingles	Medium
Exterior walls	Medium
Panels	Soft
Interior walls	Soft

# REFERENCES

AMTEC. Philippine Agricultural Engineering Standards. Volume I. Agricultural Machinery Testing and Evaluation Center. College of Engineering and Agro-Industrial Technology. University of the Philippines, Los Banos, College Laguna.

AMTEC. Philippine Agricultural Engineering Standards. Volume II. Agricultural Machinery Testing and Evaluation Center. College of Engineering and Agro-Industrial Technology. University of the Philippines, Los Banos, College Laguna.

AMTEC. Test Data Bulletin for Mechnical Rice Threshers. Agricultural Machinery Testing and Evaluation Center. U.P. Los Banos, Laguna. December 1990. 20pp.

AMTEC. Test Data Bulletin for Small Engines. Agricultural Machinery Testing and Evaluation Center. U.P Los Banos, Laguna. July 1990. 28pp.

AMTEC. Test Data Bulletin for Hand Tractors. Agricultural Machinery Testing and Evaluation Center. U.P Los Banos, Laguna. March 1993. 31pp.

Approvecho Institute. Fuel-Saving Cookstoves. 1984. GATE/GTZ. Federal Republic of Germany. 128pp.

ASAE Standards 1997. Standards Engineering Practices Data. 44th Edition. American Society of Agricultural Engineers. 978 pp.

ASHRAE. 1997 Fundamental Volume. American Society of Heating, Refrigeration and Airconditioning Engineers.

Bhattacharya, S. C. and R. M. Shrestha. 1980. Biocoal Technology and Economics. Regional Energy Resources Information Center. Asian Institute of Technology. Bangkok, Thailand. 495 pp.

Boast, M. 1991. Refrigeration. CBS Publishers and Distributors. 485 Jain Bhawan, Bhola Nath Nagar. Shadara, India. 450pp.

Brown, R. H. Farm Electrification. 1956. McGraw-Hill Book Company Inc., United States of America. 367pp.

Butlig, F. T. and R. M. Branzuela. Handbook of Applied Engineering. Formulas: Irrigation and Soil & Water Conservation. 1988. National Book Store Inc. 90pp.

Campbell, J.K. Dibble Sticks, Donkeys, and Diesels. (Machines in Crop Production). 1990. International Rice Research Institute. Los Banos, Laguna. 329pp.

Eldridge, Frank R. Wind Machines. The MITRE Energy Resources and Environment Series. New York: Van Nostrand Reinhold Co. 2nd edition. 1980. 215pp.

Fangmeier, D. D., G. O. Schwab, W. J. Elliot, and R. K. Frevert Soil and Water Conservation Engineering. 1993. 4th Edition. John Wiley & Sons Inc., United States of America. 507pp.

Fowler, R.J. Electricity Principles and Applications. McGraw-Hill Book Company Gregg Division. 322 pp.

GATE. Solar Energy. Status Report. GATE/GTZ. Postbox 5180. D-6236 Eschborn 1. Federal Republic of Germany. 54pp.

Hunt, D. 1977. Farm Power and Machinery Management. 7th Edition. Iowa State University Press. Ames, Iowa. 365pp.

Jongh, J, A, Windpumping – The State of the Art Worldwide. Paper Presented at the International Workshop on Windpumping in Asia. Center for Scientific Research. Auroville, Tamilnadu State, India. November 26-28, 1996. 25pp.

JUST. Training Manual on Food Processing and Packaging Machinery. The 3rd International Training Workshop on Food Processing and Packaging Machinery. Jiangsu University of Science and Technology. Zheojiang, Peoples Republic of China. October 8-23, 2000.

Head, S. W., Swetman, A. A., Hammonds, T. W., gordon, A. Southwell, K. H., and R. V. Harris. 1995. Small Scale Vegetable Oil Extraction. Natural Resources Institute. Overseas Development Administration. United Kingdom. 107pp.

Hunt, D. 1983. Farm Power and Machinery Management. Eight Edition. Iowa State University Press. Ames, Iowa. 352pp.

Kitani, O., Junbluth, T., Peart R, and Ramdam A. Biomass Engineering. CGIR Handbook of Agricultural Engineering. Vol. 5. American Society of Agricultural Engineers. 322 pp.

Krause, R., Lorenz, F. W. B. Hoogmoed. Soil Tillage in the Tropics and Subtropics. GATE/GTZ. Postbox 5180. D-6236 Eschborn 1. Federal Republic of Germany. 153pp.

Krutz, G., Thompson, L., and P. Claar. 1984. Design of Agricultural Machines. John Wiley and Sons, Inc. New York, USA. 472pp.

Marier, D. Wind Power. A Guide to Selecting, Siting, and Installing an Electricity-Generating Wind Power System. 1981. Rodale Press, Emmaus, Pa., United States of America. 368pp.

NAPHIRE. 1994. Technical Reference Guide on Grains Postharvest Operations. National Postharvest Research and Extension. Muñoz, Nueva Ecija, Philippines. 258pp.

PCARRD. The Philippine Recommends for Small Water Impounding Projects. 1985. PCARRD Technical Bulletin Series No. 61. Philippine Council for Agriculture and Resources Research and Development. 47pp.

PCARRD. Manual on Small Farm Reservoir. 1993. Technology and Promotion Institute. Philippine Council for Agriculture, Forestry and Natural Resources Research and Development. Los Baños, Laguna, Philippines. 92pp.

PCARRD. The Philippine Recommends for Coconut Timber Utilization. 1985. PCARRD Technical Bulletin Series No. 60. Philippine Council for Agriculture and Resources Research and Development. 93pp.

PSME Code. 1993. Philippine Society of Mechanical Engineers. The PSME Code and Standards Commission, PMSE Bldg. Quezon City, Metro Manila.384pp.

RNAM. 1991. Agricultural Machinery Design and Data Handbook. Seeders and Planters. 137 pp.

SEARCA. Grain Post-Harvest Processing Technology. 1981. Pustaka IPB. 281pp.

Schulz E.J. Diesel Mechanics. Pacific Vocational Institute - Burnaby Campus Burnaby, British Columbia. 420 pp.

Schwab, G., Fangmeier, D., Elliot, W., and R. Frevert. 1993. Soil and Water Conservation Engineering. Fourth Edition. John Wiley and sons, Inc. New York. 507pp.

Schwab, G. O. and R. K. Frevert. Elementary Soil and Water Engineering. 1986. 3rd Edition. John Wiley & Sons, Inc., Republic of Singapore. 356pp.

Stout, B.A. Seeders and Planters. CGIR Handbook of Agricultural Engineering. Vol. 3. Plant Production Engineering. Texas A & M University, USA. American Society of Agricultural Engineers. 240 pp. Stout, B.A. Tillage Machinery. CGIR Handbook of Agricultural Engineering. Vol. 3. Plant Production Engineering. Texas A & M University, USA. American Society of Agricultural Engineers. 217 pp.

Tariq, A.S., Reupke, P., and G. Sarwar. 1994. Biomass Combustion Systems. A Guide for Monitoring and Efficienct Operation. Natural Research Institute. Central Avenue, Chatham Maritime, Kent, ME4 4TB, United Kingdom. 62pp

Tropical Product Institute. Proceedings of the Conference on Animal Feeds of Tropical and Subtropical Region held at London School of Pharmacy. Brunswick Square. London WC!N 1AX. April 1-5, 1977. 347pp.

Velasco, R. A. 1997. Handbook of Construction Estimate. Loacan Publishing House Tondo, Manila. 147pp.

Wimberly, J.E. 1983. Technical Handbook for the Paddy Rice Postharvest Industry in Developing Countries. International Rice Research Institute Los Banos, Laguna, Philippines. 188 pp.