AGRICULTURAL ENGINEERING FORMULA

Alexis T. Belonio

Department of Agricultural Engineering and Environmental Management College of Agriculture Central Philippine University Iloilo City, Philippines 2006

About the Author

Alexis T. Belonio is a Professional Agricultural Engineer. Presently, he is an Associate Professor and Chairman of the Department of Agricultural Engineering and Environmental Management, College of Agriculture, Central Philippine University, Iloilo City. He finished his Bachelor of Science in Agricultural Engineering and Master of Science degrees from Central Luzon State University, Muñoz, Nueva Ecija. He has been deeply involved in teaching, research, project development, and entrepreneurial activity on various agricultural engineering projects since 1983.

He was awarded by the Philippine Society of Agricultural Engineers (PSAE) as Most Outstanding Agricultural Engineer in the Field of Farm Power and Machinery and by the Professional Regulation Commission (PRC) as Outstanding Professional in the Field of Agricultural Engineering in 1993. In 1997, he was awarded by the TOYM Foundation and the Jerry Roxas Foundation as the Outstanding Young Filipinos (TOYF) in the Field of Agricultural Engineering. He is presently a PSAE Fellow Member.

As a dedicated professional, he serves as technical consultant to various agricultural machinery manufacturers in Region VI. He also serves as a Reviewer of the TGIM Foundation Review Center on the field of Agricultural Machinery and Allied Subjects, and Agricultural Processing and Allied Subjects since 1998. He has written and published several research and technical papers.

Other Books Available:

Dictionary of Agricultural Engineering Agricultural Engineering Design Data Hanbook Problems and Solutions in Agricultural Engineering Agricultural Engineering Reviewer: Volume I Agricultural Engineering Reviewer: Volume II

Rice Husk Gas Stove Handbook
Small Farm Irrigation Windpump Handbook
Axial Flow Biomass Shredder Handbook

AGRICULTURAL ENGINEERING FORMULA

Alexis T. Belonio

Department of Agricultural Engineering and Environmental Management
College of Agriculture
Central Philippine University
Iloilo City, Philippines

Revised Edition

Copyright © 2006 by Alexis T. Belonio
No part of this book is allowed to be photocopied or reproduced in any form without written permission from the author.

Acknowledgement:

The author is very much thankful to the Lord God Almighty who inspired him to prepare this material for the benefit of those who are called to serve in the agricultural engineering profession.

He also wishes to acknowledge the following for the motivation and encouragement during the preparation of this material: (1) Dr. Norbert Orcullo of the TGIM Foundation Review Center, Manila who is persistent to fully equip students to pass the Professional AE Board Examination; and (2) Dr. Reynaldo Dusaran of the College of Agriculture, Central Philippine University, Iloilo City who is always supportive to his students and Department to obtain higher percentage passing in the board examination.

To his friends in the Philippine Society of Agricultural Engineers in the Regional and National Chapters who also encouraged me to collect all the information and materials needed in the preparation of this Handbook.

To Salve and their children: Mike, Happy, Humble, Jireh, Justly, Tenderly, and Wisdom, for their prayer and inspiration.

PREFACE

This book is a compilation of the various formula that are commonly used in agricultural engineering curriculum. Students who are taking the course as well as those who are preparing for the Professional Agricultural Engineer Board Examination may find this book useful. Practicing Agricultural Engineers and those other Engineers working in the field of agriculture will find this book as a handy reference material for design, estimate, testing, and evaluation activities.

The presentation of the formula in this book covers the different subject matter as follows: agricultural power and energy, agricultural machinery and equipment, agricultural processing and food engineering, farm electrification and instrumentation, agricultural buildings and infrastructures, agricultural waste utilization and environmental pollution, and soil and water engineering. The subject areas are arranged in alphabetical manner for ease of finding the formula needed. The parameters and units for each formula are specified in the book and can be converted to either English, Metric, or SI system using the conversion constants given at the end of the book.

This book is still in draft form. Additional subject matter and formula will be included in the future to make this material more comprehensive. Comments and suggestions are welcome for the future improvement of this book.

God bless and may this book become useful to you!

ALEXIS T. BELONIO

TABLE OF CONTENTS

Page

Air Moving Devices 1
Agricultural Building Construction 4
Agricultural Economics 9
Algebra 14
Animal Space Requirement (Minimum) 20
Bearings 24
Biogas 26
Biomass Cookstove 29
Biomass Furnace 31
Boarder Irrigation 33
Chain Transmission. 34
Conveyance Channel 38
Corn Sheller 40
Cost Return Analysis. 42
Cyclone Separator 45
Differential Calculus 48
Drip Irrigation 50
Electricity 52
Electric Motor 56
Electrification 58
Engine 60
Engine Foundation 65
Flat and V-Belt Belt Transmission 66
Fluid Mechanics. 70
Furrow Irrigation 75
Gas Cleaning 76
Gasifier 77
Gears 79
Grain Dryer 80
Grain Engineering Properties. 84
Grain Seeder 87
Grain Storage Loss 90
Grain Storage Structure 92
Heat Transfer 95
Human and Animal Power 97
Hydraulic of Well 99
Hydraulics 100
Hydro Power 101
Infiltration, Evaporation and Transpiration 102
Integral Calculus. 104
Irrigation Efficiency 108
Irrigation Requirement 110
Material Handling 112
Pipe Flow 115
Power Tiller 116
Pump 119
Pump Laws 121
Rainfall and Runoff 123
Reaper Harvester 124
Refrigeration 125
Rice Milling 127
Rice Thresher 129
Shaft, Key, and Keyway 131
Soil, Water, Plant Relation 134
Soil and Water Conservation Engineering 136
Solar Thermal System 152
Solid Geometry 154
Sprayer 156
Sprinkler Irrigation 158
Statistics 160
Temperature 163
Tillage 164
Tractor 167
Trigonometry 171
Water Treatment 174
Weir, Flumes, and Orifice 175
Wind Energy 177
CONVERSION CONSTANTS 179
REFERENCES 184

AIR MOVING DEVICES

Specific Speed $\mathrm{N}_{\mathrm{s}}=\left[\mathrm{N} \mathrm{Q}^{0.5}\right] /\left[\mathrm{Ps}^{0.75}\right]$	$\begin{aligned} & N_{s}-\text { specific speed, dmls } \\ & N-\text { speed of air moving unit, rpm } \\ & Q-\text { airflow, cfm } \\ & P_{s}-\text { pressure requirement, in. } \mathrm{H}_{2} \mathrm{O} \end{aligned}$
Impeller Diameter $\mathrm{D}=\sqrt{\frac{(2.35) 108 \mathrm{P}_{\mathrm{s}}}{\psi \mathrm{~N}^{2}}}$	$\begin{aligned} & \mathrm{D}-\text { diameter of impeller, in. } \\ & \mathrm{P}_{\mathrm{s}}-\text { pressure requirement, in. } \mathrm{H}_{2} \mathrm{O} \\ & \psi-\text { pressure coefficient, } 0.05 \text { to } 2.0 \\ & \mathrm{~N} \text { - speed of impeller, } \mathrm{rpm} \end{aligned}$
Pitch Angle for Axial Fan $\alpha=\operatorname{Sin}-1 \frac{350 \mathrm{Q}}{\phi \mathrm{ND}^{3}}$	α - pitch angle, deg Q - airflow, cfm N - speed of impeller, rpm D - diameter of impeller, in. ϕ - flow coefficient, 0.01 to 0.80
Impeller Width (centrifugal and mixed flow blower) $\mathrm{W}=\frac{175 \mathrm{Q}}{\phi \mathrm{~N} \mathrm{D}^{2}}$	W - width of impeller, in. Q - airflow, cfm N - speed of impeller, rpm D - diameter of impeller, in. ϕ - flow coefficient, 0.01 to 0.80
Impeller Width (traverse flow) $\mathrm{W}=\frac{550 \mathrm{Q}}{\phi \mathrm{~N} \mathrm{D}^{2}}$ for $0.5 \leq W / D \leq 10$	W - width of impeller, in. Q - airflow, cfm N - speed of impeller, rpm D - diameter of impeller, in. ϕ - flow coefficient, 0.01 to 0.80

AIR MOVING DEVICES

Casing Dimension (Forward Curved Centrifugal)	H_{c} - height of casing, in.
$\mathrm{H}_{\mathrm{c}}=1.7 \mathrm{D}$	B_{c} - breath of casing, in
$\mathrm{B}_{\mathrm{c}}=1.5 \mathrm{D}$	$\mathrm{W}_{\mathrm{c}}-$ width of casing, in.
$\mathrm{W}_{\mathrm{c}}=1.25 \mathrm{~W}+0.1 \mathrm{D}$	$\mathrm{D}-$ diameter of impeller, in
	W - width of impeller, in
Casing Dimension (Narrow Backward Curved	H_{c} - height of casing, in.
Centrifugal)	B_{c} - breath of casing, in
$\mathrm{H}_{\mathrm{c}}=1.4 \mathrm{D}$	$\mathrm{W}_{\mathrm{c}}-$ width of casing, in.
$\mathrm{B}_{\mathrm{c}}=1.35 \mathrm{D}$	$\mathrm{D}-$ diameter of impeller, in
$\mathrm{W}_{\mathrm{c}}=\mathrm{W}+0.1 \mathrm{D}$	W - width of impeller, in
Casing Dimension (Wide Backward Curved	H_{c} - height of casing, in.
Centrifugal)	B_{c} - breath of casing, in
$\mathrm{H}_{\mathrm{c}}=2.0 \mathrm{D}$	$\mathrm{W}_{\mathrm{c}}-$ width of casing, in.
$\mathrm{B}_{\mathrm{c}}=1.6 \mathrm{D}$	$\mathrm{D}-$ diameter of impeller, in
$\mathrm{W}_{\mathrm{c}}=\mathrm{W}+0.16 \mathrm{D}$	W - width of impeller, in
Casing Dimension (Mixed Flow)	$\mathrm{H}_{\mathrm{c}}-$ height of casing, in.
$\mathrm{H}_{\mathrm{c}}=2.0 \mathrm{D}$	B_{c} - breath of casing, in
$\mathrm{B}_{\mathrm{c}}=2.0 \mathrm{D}$	$\mathrm{W}_{\mathrm{c}}-$ width of casing, in.
$\mathrm{W}_{\mathrm{c}}=0.46 \mathrm{D}$	$\mathrm{D}-$ diameter of impeller, in
Casing Dimension (Traverse Flow)	$\mathrm{H}_{\mathrm{c}}-$ height of casing, in.
$\mathrm{H}_{\mathrm{c}}=2.2 \mathrm{D}$	B_{c} - breath of casing, in
$\mathrm{B}_{\mathrm{c}}=2.2 \mathrm{D}$	$\mathrm{W}_{\mathrm{c}}-$ width of casing, in.
$\mathrm{W}_{\mathrm{c}}=\mathrm{W}+[\mathrm{D} / 4]$	$\mathrm{D}-$ diameter of impeller, in
Casing Dimension (Vane Axial Flow)	$\mathrm{W}_{\mathrm{c}}-$ width of casing, in.
$\mathrm{W}_{\mathrm{c}}=1.2 \mathrm{D}$	$\mathrm{D}-$ diameter of impeller, in
Casing Dimension (Tube Axial Flow)	$\mathrm{W}_{\mathrm{c}}-$ width of casing, in.
$\mathrm{W}_{\mathrm{c}}=1.0 \mathrm{D}$	$\mathrm{D}-$ diameter of impeller, in
Casing Dimension (Partially Cased Fan)	$\mathrm{W}_{\mathrm{c}}-$ width of casing, in.
$\mathrm{W}_{\mathrm{c}}=0.5 \mathrm{D}$	$\mathrm{D}-$ diameter of impeller, in

AIR MOVING DEVICES

Air Horsepower $\mathrm{AHP}=\frac{\text { Q V H }}{33,-------000}$	AHP - air horsepower, hp Q - airflow rate, cfm V - specific weight of air, $\mathrm{lb} / \mathrm{ft}^{3}$ H - total head, ft
Brake Horsepower $\mathrm{BHP}=\frac{\mathrm{Q} \mathrm{P}_{\mathrm{a}}}{6360 \xi_{\mathrm{f}}}$	BHP - brake horsepower, hp Q - airflow rate, cfm P_{a} - static pressure, in. water ξ_{f} - fan efficiency, decimal
Mechanical Efficiency $\xi_{\mathrm{f}}=\mathrm{AHP} / \mathrm{BHP}$	$\xi_{f}-$ fan efficiency, decimal AHP - air horsepower, hp BHP - brake horsepower, hp
Propeller Fan Pitch $P=2 \pi r \tan \alpha$	P - pitch in. r - fan radius, in. α - angle of fan blade twist, deg
Fan Laws $\begin{array}{lll} & \mathrm{H}_{1}{ }^{1 / 4} & \mathrm{Q}_{2}{ }^{1 / 2} \\ \mathrm{D}_{2} & -----------\mathrm{Q}_{1}^{1 / 2} & \mathrm{H}_{2}^{1 / 4} \end{array}$	D - impeller diameter, in. H - fan head, in. $\mathrm{H}_{2} \mathrm{O}$ Q - air flow rate, cfm
Fan Laws $\mathrm{N}_{2}=\mathrm{N}_{1} \begin{array}{ccc} \mathrm{Q}_{1}{ }^{1 / 2} & \mathrm{H}_{2}{ }^{3 / 4} \\ & \mathrm{H}_{1}{ }^{3 / 4} & \mathrm{Q}_{2}^{1 / 2} \\ \hline \end{array}$	N - impeller speed, rpm H - fan head, in. $\mathrm{H}_{2} \mathrm{O}$ Q - air flow rate, cfm
Fan Laws $\mathrm{HP}_{2}=\mathrm{HP}_{1}-\mathrm{D}_{2}{ }^{5} \quad \mathrm{~N}_{2}{ }^{3}----------\mathrm{D}_{1}{ }^{5} \mathrm{~N}_{1}{ }^{3}$	HP - fan horsepower, hp D - fan diameter, in. N - speed of impeller, rpm

AGRICULTURAL BUILDING CONSTRUCTION

Volume of Cement/Sand/Gravel (1:2:3) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=10.5 \mathrm{~V}_{\mathrm{co}} \\ & \mathrm{~V}_{\mathrm{s}}=0.42 \mathrm{~V}_{\mathrm{co}} \\ & \mathrm{~V}_{\mathrm{g}}=0.84 \mathrm{~V}_{\mathrm{co}} \end{aligned}$	V_{c} - volume of cement, bags V_{s} - volume of sand, m^{3} V_{g} - volume of gravel, m^{3} V_{co} - volume of concrete, m^{3}
Volume of Cement/Sand/Gravel (1:2:4) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=7.84 \mathrm{~V}_{\mathrm{co}} \\ & \mathrm{~V}_{\mathrm{s}}=0.44 \mathrm{~V}_{\mathrm{co}} \\ & \mathrm{~V}_{\mathrm{g}}=0.88 \mathrm{~V}_{\mathrm{co}} \end{aligned}$	V_{c} - volume of cement, bags V_{s} - volume of sand, m^{3} V_{g} - volume of gravel, m^{3} V_{co} - volume of concrete, m^{3}
Volume of Cement/Sand/Gravel (1:3:6) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=5.48 \mathrm{~V}_{\mathrm{co}} \\ & \mathrm{~V}_{\mathrm{s}}=0.44 \mathrm{~V}_{\mathrm{co}} \\ & \mathrm{~V}_{\mathrm{g}}=0.88 \mathrm{~V}_{\mathrm{co}} \end{aligned}$	V_{c} - volume of cement, bags V_{s} - volume of sand, m^{3} V_{g} - volume of gravel, m^{3} V_{co} - volume of concrete, m^{3}
Volume of Cement/Sand/Gravel (1:3.5:7) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=5.00 \mathrm{~V}_{\mathrm{co}} \\ & \mathrm{~V}_{\mathrm{s}}=0.45 \mathrm{~V}_{\mathrm{co}} \\ & \mathrm{~V}_{\mathrm{g}}=0.90 \mathrm{~V}_{\mathrm{co}} \end{aligned}$	V_{c} - volume of cement, bags V_{s} - volume of sand, m^{3} V_{g} - volume of gravel, m^{3} V_{co} - volume of concrete, m^{3}
Number of Hallow Blocks per \mathbf{m}^{2} Wall Area (8 in. x 16 in.) $\mathrm{N}_{\mathrm{HB}}=13 \mathrm{~A}_{\mathrm{w}}$	N_{HB} - number of hallow blocks, pieces A_{w} - area of wall, m^{2}

AGRICULTURAL BUILDING CONSTRUCTION

Volume of Cement and Sand for Mortar and Plaster per \mathbf{m}^{3} of Mixture (1:2) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=14.5 \mathrm{~V}_{\mathrm{m}} \\ & \mathrm{~V}_{\mathrm{s}}=1.0 \mathrm{~V}_{\mathrm{m}} \end{aligned}$	V_{c} - volume of cement, bags V_{m} - volume of mixture, m^{3} V_{s} - volume of sand, m^{3}
Volume of Cement and Sand for Mortar and Plaster per $\mathbf{m}^{\mathbf{3}}$ of Mixture (1:3) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=9.5 \mathrm{~V}_{\mathrm{m}} \\ & \mathrm{~V}_{\mathrm{s}}=1.0 \mathrm{~V}_{\mathrm{m}} \end{aligned}$	V_{c} - volume of cement, bags V_{m} - volume of mixture, m^{3} V_{s} - volume of sand, m^{3}
Volume of Cement and Sand for Mortar and Plaster per \mathbf{m}^{3} Mixture (1:4) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=7.0 \mathrm{~V}_{\mathrm{m}} \\ & \mathrm{~V}_{\mathrm{s}}=1.0 \mathrm{~V}_{\mathrm{m}} \end{aligned}$	V_{c} - volume of cement, bags V_{m} - volume of mixture, m^{3} V_{s} - volume of sand, m^{3}
Volume of Cement and Sand for Mortar and Plaster per \mathbf{m}^{3} Mixture (1:5) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=6.0 \mathrm{~V}_{\mathrm{m}} \\ & \mathrm{~V}_{\mathrm{s}}=1.0 \mathrm{~V}_{\mathrm{m}} \end{aligned}$	V_{c} - volume of cement, bags V_{m} - volume of mixture, m^{3} V_{s} - volume of sand, m^{3}
Quantity of Cement and Sand for Plastering per Face (50 kg Cement-Class B) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=0.238 \mathrm{~A}_{\mathrm{w}} \\ & \mathrm{~V}_{\mathrm{s}}=0.025 \mathrm{~A}_{\mathrm{w}} \end{aligned}$	V_{c} - volume of cement, bags V_{s} - volume of sand, m^{3} A_{w} - area of wall, m^{2}

AGRICULTURAL BUILDING CONSTRUCTION

Quantity of Cement and Sand for Plastering per Face (50 kg Cement-Class C)	V_{c} - volume of cement, bags V_{s} - volume of sand, m^{3} A_{w} - area of wall, m^{2}
$\begin{aligned} & \mathrm{V}_{\mathrm{c}}=0.170 \mathrm{~A}_{\mathrm{w}} \\ & \mathrm{~V}_{\mathrm{s}}=0.025 \mathrm{~A}_{\mathrm{w}} \end{aligned}$	
Quantity of Cement and Sand for Plastering per Face (50 kg Cement-Class D)	V_{c} - volume of cement, bags V_{s} - volume of sand, m^{3} A_{w} - area of wall, m^{2}
$\begin{aligned} \mathrm{V}_{\mathrm{c}} & =0.150 \mathrm{~A}_{\mathrm{w}} \\ \mathrm{~V}_{\mathrm{s}} & =0.025 \mathrm{~A}_{\mathrm{w}} \end{aligned}$	
Quantity of Cement and Sand per 100-4 in. CHB Mortar (50 kg Cement-Class B) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=3.328 \mathrm{~N}_{\mathrm{HB}} / 100 \\ & \mathrm{~V}_{\mathrm{s}}=0.350 \mathrm{~N}_{\mathrm{HB}} / 100 \end{aligned}$	V_{c} - volume of cement, bags V_{s} - volume of sand, m^{3} N_{HB} - number of hallow blocks
Quantity of Cement and Sand per 100-6 in. CHB Mortar (50kg Cement-Class B) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=6.418 \mathrm{~N}_{\mathrm{HB}} / 100 \\ & \mathrm{~V}_{\mathrm{s}}=0.675 \mathrm{~N}_{\mathrm{HB}} / 100 \end{aligned}$	V_{c} - volume of cement, bags V_{s} - volume of sand, m^{3} N_{HB} - number of hallow blocks
Quantity of Cement and Sand per 100-8 in. CHB Mortar (50 kg Cement-Class B) $\begin{aligned} & \mathrm{V}_{\mathrm{c}}=9.504 \mathrm{~N}_{\mathrm{HB}} / 100 \\ & \mathrm{~V}_{\mathrm{s}}=1.000 \mathrm{~N}_{\mathrm{HB}} / 100 \end{aligned}$	V_{c} - volume of cement, bags V_{s} - volume of sand, m^{3} N_{HB} - number of hallow blocks

AGRICULTURAL BUILDING CONSTRUCTION

Quantity of Cement and Sand per 100-8 $\quad \mathrm{V}_{\mathrm{c}}$ - volume of cement, bags in. CHB Mortar (50kg Cement-Class B)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}=9.504 \mathrm{~N}_{\mathrm{HB}} / 100 \\
& \mathrm{~V}_{\mathrm{s}}=1.000 \mathrm{~N}_{\mathrm{HB}} / 100
\end{aligned}
$$

$$
\begin{array}{l|l}
\hline \text { Weight of Tie Wire (No. } 16 \text { GI wire) } & W_{\mathrm{tw}} \text { - weight of tie wire, } \mathrm{kg}
\end{array}
$$

$$
\mathrm{W}_{\mathrm{rb}} \text { - weight of reinforcement bar, tons }
$$

$\mathrm{W}_{\mathrm{tw}}=20 \quad \mathrm{~W}_{\mathrm{rb}}$
Vertical Reinforcement Bar Requ
$\mathrm{L}_{\mathrm{b}}=3.0 \mathrm{~A}_{\mathrm{w}}(0.4 \mathrm{~m}$ spacing $)$
$\mathrm{L}_{\mathrm{b}}=2.1 \mathrm{~A}_{\mathrm{w}}(0.6 \mathrm{~m}$ spacing $)$
$\mathrm{L}_{\mathrm{b}}=1.5 \mathrm{~A}_{\mathrm{w}}(0.8 \mathrm{~m}$ spacing $)$

Horizontal Reinforcement Bar Requirement

$\mathrm{L}_{\mathrm{b}}=2.7 \mathrm{~A}_{\mathrm{w}}$ (every 2 layers)
$\mathrm{L}_{\mathrm{b}}=1.9 \mathrm{~A}_{\mathrm{w}}$ (every 3 layers)
$\mathrm{L}_{\mathrm{b}}=1.7 \mathrm{~A}_{\mathrm{w}}$ (every 4 layers)
L_{b} - length of vertical bar needed, m A_{w} - area of wall, m^{2}
[
L_{b} - length of vertical bar needed, m A_{w} - area of wall, m^{2}

AGRICULTURAL BUILDING CONSTRUCTION

Board Feet of Lumber $\mathrm{BF}=\frac{\mathrm{TW} \mathrm{~L}}{12}$	BF - number of board foot, bd-ft T - thickness of wood, in. W - width of wood, in. L - length of wood, ft
Number of Board Foot that can be Obtained from Log $\mathrm{BF}=\frac{(\mathrm{D}-4)^{2} \mathrm{~L}}{16}$	BF - number of board foot, bd-ft D - small diameter of log, in. L - length of log, ft
Volume of Paint Needed for Wood $\begin{aligned} & \mathrm{P}_{\mathrm{v}}=3.78 \mathrm{~A}_{\mathrm{w}} / 20 \quad\left(1^{\text {st }} \text { coating }\right) \\ & \mathrm{P}_{\mathrm{v}}=3.78 \mathrm{~A}_{\mathrm{w}} / 25 \quad\left(2^{\text {nd }} \text { coating }\right) \end{aligned}$	P_{v} - volume of paints needed, liters A_{w} - area of wall, m^{2}
Nails Requirement $\mathrm{W}_{\mathrm{n}}=20 \mathrm{BF}_{\mathrm{w}} / 1000$	W_{n} - weight of nail needed, kg BF_{w} - number of board foot of wood, bd-ft
Wood Preservation $\mathrm{V}_{\mathrm{p}}=\mathrm{A}_{\mathrm{s}} / 9.3$	V_{p} - volume of preservatives, gal A_{s} - area of surface, m^{2}

AGRICULTURAL ECONOMICS

Elasticity $\mathrm{E}=\frac{\% \Delta \mathrm{Qd}}{\% \Delta \mathrm{P}}$	$\begin{aligned} & \text { E - elasticity } \\ & \text { Qd - quantity of demand } \\ & \text { P - Price } \end{aligned}$
$\left.\begin{array}{l} \text { Point Elasticity } \\ \qquad \text { Epa }=\left(\frac{\Delta \mathrm{Q}}{\frac{\mathrm{Q}+\mathrm{Q}_{2} / 2}{\mathrm{P}_{1}+\mathrm{P}_{2} / 2}}\right) \end{array}\right)$	$\begin{aligned} & \mathrm{Q} \text { - quantity } \\ & \mathrm{P} \text { - price } \\ & \Delta \mathrm{Q} \text { - change in quantity } \\ & \Delta \mathrm{P} \text { - change in price } \end{aligned}$
Simple Interest $\begin{array}{r} \mathrm{I}=\mathrm{P} \text { i } \mathrm{N} \\ \mathrm{~F}=\mathrm{P}+\mathrm{I} \end{array}$	I - total interest earned for N period i - interest rate N - number of interest period P - principal or the present value F - future value or the total amount to be repaid
Compound Interest $\mathrm{F}=\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}$	$\begin{aligned} & \mathrm{F} \text { - future value or the total } \\ & \text { amount to be repaid } \\ & \mathrm{P} \text { - principal or the present } \\ & \text { value } \\ & \mathrm{i} \text { - interest rate } \\ & \mathrm{n} \text { - number of interest period } \end{aligned}$
Effective Interest Rte $\begin{aligned} & \operatorname{EIR}=\frac{F-P}{P} \\ & \operatorname{EIR}=(1+i)^{n}-1 \end{aligned}$	EIR - effective interest rate F - future value or the total amount to be repaid P - principal or the present value i - nominal interest rate n - interest period

AGRICULTURAL ECONOMICS

Perpetuity

1. To find for P given A :

$$
P=\left[\frac{(1+i)^{n}-1}{i(1+i)^{n}}\right]
$$

2. T find for A given P :

$$
A=P\left[\frac{i(1+i)^{n}}{(1+i)^{n}-1}\right]
$$

3. To find for F given A :

$$
A=P\left[\frac{(1+i)^{n}-1}{i}\right]
$$

4. To find for A given F :

$$
A=F\left[\frac{i}{(1+i)^{n}-1}\right]
$$

P - principal or present value
A - annuity
i - interest rate
n - interest period
F - Future value or the total amount to be repaid

AGRICULTURAL ECONOMICS

Perpetuity and Capitalized Cost $P=\frac{x}{i}\left[\frac{i}{(1+i)^{n}-1}\right]$	P - capitalized value of A x - amount needed to provide for replacement or maintenance for K period
Arithmetic Gradient $\begin{aligned} & A=G\left[\frac{1}{i}-\frac{n}{(1=i)^{n}-1}\right] \\ & P=\frac{1}{i}-\frac{(1+i)^{n}}{i}-\frac{n}{(1+i)^{n}} \\ & P=\frac{G}{i}\left[\frac{(1+i)^{n}-1}{i}-\frac{n}{(1+i)^{n}}\right] \\ & F=\frac{G}{i}\left[\frac{(1+i)^{n}-1}{i}-n\right] \end{aligned}$	A - uniform periodic amount equivalent to the arithmetic gradient series. G - arithmetic gradient change in periodic amounts t the end of each period. P - present with of G F - future worth of accommodated G
Depreciation Cost $\begin{aligned} & \mathrm{d}=\frac{\mathrm{C}_{\mathrm{o}}-\mathrm{C}_{\mathrm{n}}}{\mathrm{n}} \\ & \mathrm{D}_{\mathrm{m}}=\mathrm{mxd} \\ & \mathrm{C}_{\mathrm{m}}=\mathrm{C}_{\mathrm{o}}-\mathrm{C}_{\mathrm{m}} \end{aligned}$	d - annual depreciation C_{0} - original cost n - useful life; years C_{n} - salvage value or the scrap value D_{m} - accrued total depreciation up to "m" years m - age of property at any time less than " n " C_{m} - book value t the end of " m " years

AGRICULTURAL ECONOMICS

Sinking Fund Method $d=\left(C_{0}-C_{n}\right)\left[\frac{i}{\frac{(1+i)^{n}-1}{i}}\right]$	d-annual depreciation C_{0} - original cost n - useful life; years C_{n} - salvage value or the scrap value i - interest rate
$D_{m}=\left(C_{o}-C_{n}\right)\left(\frac{\frac{(1+i)^{m}-1}{i}}{\frac{i}{(1+i)^{n}-1}} \frac{i}{\frac{(1)}{}}\right)$	d-annual depreciation C_{0} - original cost n - useful life; years C_{n} - salvage value or the scrap value D_{m} - accrued total depreciation up to "m" years
Declining Balance Method (Matheson Formula)	d - annual depreciation C_{o} - original cost n - useful life; years C_{n} - salvage value or the scrap value m - age of property at any time less than " n " C_{m} - book value t the end of " m " years
Sum of the Years - Digits (SYD) Method $\sum \text { Years }=\mathrm{n} / 2(\mathrm{n}+1)$ Annual Depreciation $=\left(\mathrm{C}_{\mathrm{o}}-\mathrm{C}_{\mathrm{n}}\right)$ $\text { [n / } \left.\sum \text { years }\right]$	C_{0} - original cost n - useful life; years C_{n} - salvage value or the scrap value

AGRICULTURAL ECONOMICS

Double Rate Declining Balance $\mathrm{C}_{\mathrm{m}}=\mathrm{C}_{\mathrm{o}}(1-2 / \mathrm{n})^{\mathrm{m}}$	C_{o} - original cost n - useful life; years m - age of property at any time less than " n " C_{m} - book value t the end of "m" years
Service Output Method $\begin{aligned} \mathrm{d}_{1} & =\frac{\mathrm{C}_{0}-\mathrm{C}_{\mathrm{n}}}{T} \\ \text { or } \quad D_{m} & =O_{m} \mathrm{~d} \\ \mathrm{D}_{\mathrm{m}} & =\frac{\left(\mathrm{C}_{0}-\mathrm{C}_{\mathrm{n}}\right)-Q_{m}}{T} \\ \mathrm{C}_{\mathrm{m}} & =\mathrm{C}_{\mathrm{o}}-\mathrm{D}_{\mathrm{m}} \end{aligned}$	```T - total units of output produced during the life of property Qm d```
Fixed Cost $\begin{aligned} & C_{t}=C_{p}+C_{v} \\ & C v=v D \\ & C_{T}=C_{F}+v D \end{aligned}$	$\begin{aligned} & \hline \mathrm{C}_{\mathrm{F}}-\text { fixed cost } \\ & \mathrm{v}-\text { variable cost / unit } \\ & \mathrm{D}-\text { units produced } \\ & \mathrm{C}_{\mathrm{T}}-\text { total cost } \end{aligned}$
Profit $\mathrm{P}=\mathrm{TR}-\mathrm{TC}$	P - profit TR - total revenue TC - total cost

ALGEBRA

Laws of Exponents $\begin{gathered} a^{m} \cdot a^{n}=a^{m+n} \\ a^{m} \div a^{n}=a^{m-n} \\ =a^{o} \\ \left(a^{m}\right)^{n}=a^{m n} \\ (a b)^{m}=a^{m} b^{m} \\ (a / b)^{m}=a^{m} / b^{m} \end{gathered}$	$\begin{aligned} & \text { If } m>n \\ & m=n ; a \neq 0 \end{aligned}$
Rational Exponents $\begin{gathered} a^{1 / n}={ }^{n} \sqrt{a} \\ \left.a^{m / n}={ }^{n} \sqrt{ } a^{m} \text { or }\left({ }^{n} \sqrt{ }\right)^{m}\right)^{m} \end{gathered}$	
Negative Exponents $\begin{gathered} \mathrm{a}^{-\mathrm{m}}=1 / \mathrm{a}^{\mathrm{m}}\left(\mathrm{a}^{-\mathrm{m}} / \mathrm{b}\right)=(\mathrm{b} / \mathrm{a})^{\mathrm{m}} \\ 1=\frac{\mathrm{a}^{\mathrm{m}}}{\mathrm{a}^{-\mathrm{m}}} \end{gathered}$	
Radicals $\begin{aligned} & a^{1 / n}={ }^{n} \sqrt{ } a \\ & a^{m / n}={ }^{n} \sqrt{ } a^{m} \text { or }\left({ }^{n} \sqrt{ } a\right)^{m} \end{aligned}$	A - is called the radicand m, n index (root)

ALGEBRA

Law of Radicals

Complex Number $\begin{aligned} & i=\sqrt{ }-1=i^{2}=-1 \\ & \sqrt[n]{n}=\sqrt[n]{n} a(i) \end{aligned}$	n is even
Power of \mathbf{i}	
$\begin{aligned} & (i=\sqrt{ }-1)^{2} \\ & i^{2}=-1 \end{aligned}$	
Linear Equation in One Variable $a x+b=0$	$a \neq 0$

ALGEBRA

Special Products

Factor Types

1. Common factor

$$
a(x+y+z)=a x+a y+a z
$$

2. Square of binomial

$$
(\mathrm{a} \pm \mathrm{b})^{2}=\mathrm{a}^{2} \pm 2 \mathrm{ab}+\mathrm{b}^{2}
$$

3. Sum or difference of two numbers

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

4. Difference of two cubes

$$
(x-y)\left(x^{2}+x y+y^{2}\right)=x^{3}-y^{3}
$$

5. Sum of two cubes

$$
(x+y)\left(x^{2}-x y+y^{2}\right)=x^{3}+y^{3}
$$

6. Product of two similar numbers

$$
(x+b)(x+d)=x^{2}+(b+d) x+b d
$$

$$
(a x+b)(c x+d)=a c x^{2}+(b c+a d) x+b d
$$

Quadratic Trinomial

$$
\begin{gathered}
x^{2}+(b+d) x+b d=(x+b)(x+d) \\
a c x^{2}+(b c+a d) x+b d=(a x+b)(a x+d
\end{gathered}
$$

ALGEBRA

Factoring of Polynomial Functions with Rational Roots

Form:
$a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots a x+a_{0}$
Possible roots:

$$
(r)= \pm \frac{\text { factor of } a_{0}}{\text { factor of } a_{n}}
$$

Quadratic Equation in One Variable

Form:

$$
A x^{2}+b x+c=0
$$

Method of Solutions:
If $b=0, x= \pm \sqrt{-c / a}$
If factorable, use the theorem:

$$
\text { If } a b=0, a=0 \text { or } b=0
$$

Note:

Avoid dividing an equation by variable so as not to loose roots.

ALGEBRA

Quadratic Formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 \mathrm{a}}$	
The Discriminant: $\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}$	$\mathrm{D}=0$ Two identical and real roots D >0 Two distinct and real roots D <0 Two complex conjugates roots
Sum and Products of Roots The $\operatorname{sum}\left(X_{s}\right)=-b / a$ The product $\left(\mathrm{X}_{\mathrm{p}}\right)=\mathrm{c} / \mathrm{a}$	$\begin{aligned} & \mathrm{X}_{1}+\mathrm{X}_{2} \\ & \mathrm{X}_{1} \mathrm{X}_{2} \end{aligned}$
Linear Equation in Two Variables Forms: $\begin{aligned} & a_{1} x+b_{1} y+c_{1}=0 \\ & a_{2} x+b_{2} y+c_{2}=0 \end{aligned}$ Method of Solution: 1. by elimination 2. by determinants	

ALGEBRA

Linear Equation of Three Variables

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
& a_{2} x+b_{2} y+c_{2} z+d_{2}=0 \\
& a_{3} x+b_{3} y+c_{3} z+d_{3}=0
\end{aligned}
$$

Method of Solution:

1. by elimination
2. by determinants

Quadratic Equations in Two Variable One Linear and One Quadratic:

$$
\begin{aligned}
& a_{1} x+b_{1} y=c_{1} \\
& a_{1} x^{-2}+b_{1} y^{2}=c_{2}
\end{aligned}
$$

Two Formulas Used in Solving a Problem in Arithmetic Progression:

Last term ($\mathrm{n}^{\text {th }}$ term)

$$
a_{n}=a_{1}+(n-1) d
$$

Sum of all terms

$$
\begin{aligned}
& S=n / 2\left(a_{1}+a_{n}\right) \\
& \text { or } \quad S=n / 2\left[2 a_{1}+(n-1) d\right]
\end{aligned}
$$

ANIMAL SPACE REQUIREMENT (Minimum)

Lairage	SR - space requirement, m^{2} N_{a} - number of animals
$\mathrm{SR}=2.23 \mathrm{~N}_{\mathrm{a}}$: large/loose type	
$\mathrm{SR}=3.30 \mathrm{~N}_{\mathrm{a}}$: large/tie-up type	
$\mathrm{SR}=0.60 \mathrm{~N}_{\mathrm{a}}$: swine more than 100 kg	
$\mathrm{SR}=0.56 \mathrm{~N}_{\mathrm{a}}$: small animals	
Goat and Sheep (Solid Floor)	$\begin{aligned} & \text { SR - space requirement, } m^{2} \\ & N_{a}-\text { number of animals } \end{aligned}$
$\mathrm{SR}=0.80 \mathrm{~N}_{\mathrm{a}} \quad: 35 \mathrm{~kg}$ animal	
$\mathrm{SR}=1.10 \mathrm{~N}_{\mathrm{a}} \quad: 50 \mathrm{~kg}$ animal	
$\mathrm{SR}=1.40 \mathrm{~N}_{\mathrm{a}} \quad: 70 \mathrm{~kg}$ animal	
$\mathrm{SR}=0.45 \mathrm{~N}_{\mathrm{a}} \quad: \mathrm{kid} / \mathrm{lamb}$	
$\mathrm{SR}=3.00 \mathrm{Na}_{\mathrm{a}} \quad$: buck/ram	
Goat and Sheep (Slatted Floor)	SR - space requirement, m^{2} N_{a} - number of animals
$\mathrm{SR}=0.70 \mathrm{~N}_{\mathrm{a}} \quad: 35 \mathrm{~kg}$ animal	
$\mathrm{SR}=0.90 \mathrm{~N}_{\mathrm{a}} \quad: 50 \mathrm{~kg}$ animal	
$\mathrm{SR}=1.10 \mathrm{~N}_{\mathrm{a}} \quad: 70 \mathrm{~kg}$ animal	
$\mathrm{SR}=0.35 \mathrm{Na}_{\mathrm{a}} \quad: \mathrm{kid} / \mathrm{lamb}$	
$\mathrm{SR}=2.60 \mathrm{~N}_{\mathrm{a}} \quad$: buck/ram	

ANIMAL SPACE REQUIREMENT (Minimum)

Goat and Sheep (Open Yard)	SR - space requirement, m^{2} N_{a} - number of animals
$\mathrm{SR}=2.00 \mathrm{~N}_{\mathrm{a}} \quad: 35 \mathrm{~kg}$ animal	
$\mathrm{SR}=2.50 \mathrm{~N}_{\mathrm{a}} \quad: 50 \mathrm{~kg}$ animal	
$\mathrm{SR}=3.00 \mathrm{~N}_{\mathrm{a}} \quad: 70 \mathrm{~kg}$ animal	
Goat and Sheep (Lactating)	SR - space requirement, m^{2} N_{a} - number of animals
$\mathrm{SR}=1.60 \mathrm{~N}_{\mathrm{a}}$: over 70 kg pregnant	
$\mathrm{SR}=2.00 \mathrm{~N}_{\mathrm{a}}: 50-70 \mathrm{~kg}$ lactating	
$\mathrm{SR}=2.30 \mathrm{~N}_{\mathrm{a}}$: over 70 kg lactating	
Cattle Feed Lot $\mathrm{SR}=4.00 \mathrm{~N}_{\mathrm{a}}: \text { shed space }$	SR - space requirement, m^{2} N_{a} - number of animals
$\mathrm{SR}=5.00 \mathrm{~N}_{\mathrm{a}}$: loafing area	
Cattle Ranch (Holding Pen)	SR - space requirement, m^{2} N_{a} - number of animals
$\mathrm{SR}=1.60 \mathrm{~N}_{\mathrm{a}}: 270-540 \mathrm{~kg}$	
$\mathrm{SR}=1.90 \mathrm{~N}_{\mathrm{a}}$: over 540 kg	

ANIMAL SPACE REQUIREMENT (Minimum)

Cattle Shed or Barn $\begin{gathered} \mathrm{SR}=1.00 \mathrm{~N}_{\mathrm{a}}: \text { calves up to } 3 \mathrm{mo} \\ \mathrm{SR}=2.00 \mathrm{~N}_{\mathrm{a}}: \text { calves } 2-3 \mathrm{mo} \\ \mathrm{SR}=3.00 \mathrm{~N}_{\mathrm{a}}: \text { calves } 7 \mathrm{mo}-1 \mathrm{yr} \\ \mathrm{SR}=4.00 \mathrm{~N}_{\mathrm{a}}: \text { yearling } 1-2 \mathrm{yr} \\ \mathrm{SR}=5.00 \mathrm{~N}_{\mathrm{a}}: \text { heifer/steer } 2-3 \mathrm{yr} \\ \mathrm{SR}=6.00 \mathrm{~N}_{\mathrm{a}}: \text { milking and dry cow } \\ \mathrm{SR}=10.00 \mathrm{~N}_{\mathrm{a}}: \text { cows in maternity } \\ \text { stall } \end{gathered}$	SR - space requirement, m^{2} N_{a} - number of animals
Carabao Feedlot $\mathrm{SR}=4.00 \mathrm{~N}_{\mathrm{a}}$	SR - space requirement, m^{2} N_{a} - number of animals
Laying Hens (Growing 7-22 Weeks) $\begin{aligned} & \mathrm{SR}=0.14 \mathrm{~N}_{\mathrm{a}}: \text { litter floor } \\ & \mathrm{SR}=0.06 \mathrm{~N}_{\mathrm{a}}: \text { slotted floor } \\ & \mathrm{SR}=0.07 \mathrm{~N}_{\mathrm{a}}: \text { slot-litter floor } \end{aligned}$	SR - space requirement, m^{2} N_{a} - number of birds
Laying Hens (Laying Beyond 22 Weeks) $\mathrm{SR}=0.17 \mathrm{~N}_{\mathrm{a}}$: litter floor $\mathrm{SR}=0.09 \mathrm{~N}_{\mathrm{a}}$: slotted floor $\mathrm{SR}=0.14 \mathrm{~N}_{\mathrm{a}}$: slot-litter floor	$\begin{aligned} & \text { SR - space requirement, } \mathrm{m}^{2} \\ & \mathrm{~N}_{\mathrm{a}}-\text { number of birds } \end{aligned}$

ANIMAL SPACE REQUIREMENT (Minimum)

Broiler $\begin{aligned} & \mathrm{SR}=0.0625 \mathrm{~N}_{\mathrm{a}}: 4 \text { week and below } \\ & \mathrm{SR}=0.1250 \mathrm{~N}_{\mathrm{a}}: \text { above } 4 \text { weeks } \end{aligned}$	$\begin{aligned} & \text { SR - space requirement, } \mathrm{m}^{2} \\ & \mathrm{~N}_{\mathrm{a}} \text { - number of birds } \end{aligned}$
Swine (Group of Growing Swine) $\begin{aligned} & \mathrm{SR}=0.11 \mathrm{~N}_{\mathrm{a}}: \text { up to } 10 \mathrm{~kg} \\ & \mathrm{SR}=0.20 \mathrm{~N}_{\mathrm{a}}: 11 \text { to } 30 \mathrm{~kg} \\ & \mathrm{SR}=0.35 \mathrm{~N}_{\mathrm{a}}: 21 \text { to } 40 \mathrm{~kg} \\ & \mathrm{SR}=0.50 \mathrm{~N}_{\mathrm{a}}: 41 \text { to } 60 \mathrm{~kg} \\ & \mathrm{SR}=0.70 \mathrm{~N}_{\mathrm{a}}: 61 \text { to } 80 \mathrm{~kg} \\ & \mathrm{SR}=0.85 \mathrm{~N}_{\mathrm{a}}: 81 \text { to } 100 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \text { SR }- \text { space requirement, } \mathrm{m}^{2} \\ & \mathrm{~N}_{\mathrm{a}} \text { - number of } \\ & \quad \text { animals } \end{aligned}$
Swine $\begin{aligned} \mathrm{SR}=1.00 \mathrm{~N}_{\mathrm{a}}: \text { Gilts up to mating } \\ \mathrm{SR}=2.50 \mathrm{~N}_{\mathrm{a}}: \text { Adult pigs in group } \\ \mathrm{SR}=1.20 \mathrm{~N}_{\mathrm{a}}: \text { Gestating sows } \\ \mathrm{SR}=7.50 \mathrm{~N}_{\mathrm{a}}: \text { Boar in pens } \\ \mathrm{SR}=7.40 \mathrm{~N}_{\mathrm{a}}: \text { Lactating sows and } \\ \text { liters - individual } \\ \text { pen } \end{aligned}$	SR - space requirement, m^{2} N_{a} - number of animals

BEARINGS

Bearing Life $\mathrm{L}=\left[\frac{\mathrm{C}}{\mathrm{~F}}\right]^{\mathrm{n}}$	L - bearing life, million revolution C - basic dynamic capacity, N F - actual radial load, N $\mathrm{n}-3$ for ball bearing, and 3.33 for roller bearing
Radial Load Acting on Shaft $F=\frac{19.1 \times 10^{6} \mathrm{P} \mathrm{~K}}{D_{p} \mathrm{~N}}$	F - radial force on the shaft, N P - power transmitted, kW K - drive tension factor, 1 for chain drive and gears; and 1.5 for v-belt drive D_{p} - pitch diameter of sheave, sprocket, etc, mm N - shaft speed, rpm
Bearing Load in Belt $\mathrm{F}_{\mathrm{t}}=\frac{974000 \mathrm{H}}{\mathrm{~N} \mathrm{r}}$	F_{t} - effective force transmitted by belt or chain, kgf-mm H - power transmitted, kW N - speed, rpm r - effective radius of pulley or sprocket, mm

BEARINGS

Actual Load Applied to Pulley shaft $L_{a}=f_{b} \quad F_{t}$	L_{a} - actual load applied to pulley shaft, kgf f_{b} - belt factor, 2 to 2.5 for v-belt and 2.5 to 5 for flat belt; 1.25 to 1.5 for chain drive F_{t} - effective force transmitted by belt or chain, kgf-mm
Rating Life of Ball Bearing in Hours $\mathrm{L}_{\mathrm{h}}=500\left(\left(\frac{10^{6}}{3 \times 10^{4} \mathrm{~N}}\right)^{0.33} \frac{\mathrm{C}}{\mathrm{P}}\right)^{3}$	L_{h} - rating life of ball bearing, hours N - speed, rpm C - basic load rating, kgf P - bearing load, kgf
Rating Life of Roller Bearing in Hours $\mathrm{L}_{\mathrm{h}}=500\left(\left(\frac{10^{6}}{3 \times 10^{4} \mathrm{~N}}\right)^{0.3} \frac{\mathrm{C}}{\mathrm{P}}\right)^{3.33}$	L_{h} - rating life of roller bearing, hours N - speed, rpm C - basic load rating, kgf P - bearing load kgf

BIOGAS

Manure Production (Pig) $\begin{aligned} & \mathrm{W}_{\mathrm{m}}=2.20 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: 3-8 \mathrm{mos} \\ & \mathrm{~W}_{\mathrm{m}}=2.55 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: 18-36 \mathrm{~kg} \\ & \mathrm{~W}_{\mathrm{m}}=5.22 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: 36-55 \mathrm{~kg} \\ & \mathrm{~W}_{\mathrm{m}}=6.67 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: 55-73 \mathrm{~kg} \\ & \mathrm{~W}_{\mathrm{m}}=8.00 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: 73-91 \mathrm{~kg} \end{aligned}$	W_{m} - weight of manure produced, kg N_{a} - number of animals N_{d} - number of days
Manure Production (Cow) $\begin{aligned} & \mathrm{W}_{\mathrm{m}}=14.0 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: \text { Feedlot } \\ & \mathrm{W}_{\mathrm{m}}=13.0 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: \text { Breeding } \\ & \mathrm{W}_{\mathrm{m}}=7.5 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: \text { Work } \end{aligned}$	$\begin{aligned} & \mathrm{W}_{\mathrm{m}}-\text { weight of manure produced, } \mathrm{kg} \\ & \mathrm{~N}_{\mathrm{a}}-\text { number of animals } \\ & \mathrm{N}_{\mathrm{d}}-\text { number of days } \end{aligned}$
Manure Production (Buffalo) $\begin{aligned} & \mathrm{W}_{\mathrm{m}}=14.00 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: \text { Breeding } \\ & \mathrm{W}_{\mathrm{m}}=8.00 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: \text { Work } \end{aligned}$	W_{m} - weight of manure produced, kg N_{a} - number of animals N_{d} - number of days
Manure Production (Horse) $\begin{aligned} & \mathrm{W}_{\mathrm{m}}=13.50 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: \text { Breeding } \\ & \mathrm{W}_{\mathrm{m}}=7.75 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: \text { Work } \end{aligned}$	$\begin{aligned} & \mathrm{W}_{\mathrm{m}} \text { - weight of manure produced, kg } \\ & \mathrm{N}_{\mathrm{a}} \text { - number of animals } \\ & \mathrm{N}_{\mathrm{d}} \text { - number of days } \end{aligned}$
Manure Production (Chicken) $\begin{aligned} & \mathrm{W}_{\mathrm{m}}=0.075 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: \text { Layer } \\ & \mathrm{W}_{\mathrm{m}}=0.025 \mathrm{~N}_{\mathrm{a}} \mathrm{~N}_{\mathrm{d}}: \text { Broiler } \end{aligned}$	W_{m} - weight of manure produced, kg N_{a} - number of birds N_{d} - number of days

BIOGAS

Volume of Mixing Tank (15\% Freeboard) $\mathrm{V}_{\mathrm{mt}}=\mathrm{w}_{\mathrm{m}} \mathrm{~N}_{\mathrm{a}} \mathrm{~T}_{\mathrm{m}} \mathrm{MR}$	V_{mt} - volume of mixing tank, m^{3} w_{m} - daily manure production, kg /day-animal N_{a} - number of animals T_{m} - mixing time, day MR - mixing ratio, 1 for 1:1 and 2 for 1:2
Volume of Digester Tank (15\% Freeboard) $\mathrm{V}_{\mathrm{dt}}=\mathrm{w}_{\mathrm{m}} \mathrm{~N}_{\mathrm{a}} \mathrm{~T}_{\mathrm{r}} \mathrm{MR}$	V_{dt} - volume of digester tank, m^{3} w_{m} - daily manure production, $\mathrm{kg} /$ day-animal N_{a} - number of animals T_{r} - retention time, day MR - mixing ratio, 1 for 1:1 and 2 for 1:2
Digester Dimension (Floating TypeCylindrical) $\begin{aligned} & \mathrm{D}_{\mathrm{d}}=\left[\left(4.6 \times \mathrm{V}_{\mathrm{d}}\right) /(\pi \times \mathrm{r})\right]^{1 / 3} \\ & \mathrm{H}_{\mathrm{d}}=\mathrm{r} \mathrm{D}_{\mathrm{d}} \end{aligned}$	D_{d} - inner diameter, m V_{d} - effective digester volume, m^{3} r - height to diameter ratio H_{d} - digester height, m
Digester Dimension (Floating TypeSquare) $\begin{aligned} & \mathrm{S}_{\mathrm{d}}=\left[\left(1.15 \times \mathrm{V}_{\mathrm{d}}\right) /(\mathrm{r})\right]^{1 / 3} \\ & \mathrm{H}_{\mathrm{d}}=\mathrm{r} \mathrm{Sd} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{d}}-\text { inner side, } \mathrm{m} \\ & \mathrm{~V}_{\mathrm{d}}-\text { effective digester volume, } \mathrm{m}^{3} \\ & \mathrm{r} \text { - height to side ratio } \\ & \mathrm{H}_{\mathrm{d}} \text { - digester height, } \mathrm{m} \end{aligned}$

BIOGAS

$$
\begin{aligned}
& \text { Digester Dimension (Floating Type- } \\
& \text { Rectangular) } \\
& \qquad \begin{array}{c}
\mathrm{W}_{\mathrm{d}}=\left[\left(1.15 \mathrm{~V}_{\mathrm{d}}\right) /\left(\mathrm{rp}^{2}\right)^{1 / 3}\right. \\
\mathrm{H}_{\mathrm{d}}=\mathrm{r} \mathrm{~L}_{\mathrm{d}}
\end{array}
\end{aligned}
$$

W_{d} - inner width, m
V_{d} - effective digester volume, m^{3}
r - height to width ratio
p - desired width and length proportion
H_{d} - digester height, m

Gas Chamber (Floating-Type Cylindrical)

$\mathrm{D}_{\mathrm{g}}=\left(45 \mathrm{D}_{\mathrm{d}}-\mathrm{w}\right) / 50:$
inner diameter
$\mathrm{h}=\mathrm{D}_{\mathrm{g}} \operatorname{Tan} 9.5 / 2$:
height of pyramidal roof
$H_{s}=1.15\left[\left\{4 \mathrm{~V}_{\mathrm{s}} / \pi \mathrm{D}_{\mathrm{s}}\right)+\mathrm{H}_{\mathrm{p}}\right]:$ height of gas chamber

Gas Chamber (Floating-Type Square/Rectangular)
$\mathrm{L}_{\mathrm{g}}=\left(45 \mathrm{~L}_{\mathrm{d}}-\mathrm{w}\right) / 50$:
inner length
$\mathrm{W}_{\mathrm{g}}=\left(45 \mathrm{~L}_{\mathrm{d}}-\mathrm{w}\right) / 50$: inner width
$\mathrm{h}=\mathrm{W}_{\mathrm{g}} \operatorname{Tan} 9.5 / 2$:
height of pyramidal roof
$\mathrm{H}_{\mathrm{g}}=1.15\left[\left\{\mathrm{~V}_{\mathrm{g}} / \mathrm{L}_{\mathrm{g}} \mathrm{W}_{\mathrm{g}}\right)+\mathrm{H}_{\mathrm{p}}\right]:$
height of gas chamber
D_{g} - inner diameter of gas chamber, m
D_{d} - inner diameter of digester, m
V_{s} - effective gas chamber volume, m^{3}
w - gas chamber wall thickness, cm
h - height of pyramidal roof, m
H_{s} - height of gas chamber, m
H_{p} - desired pressure head, m
L_{g} - inner length of gas chamber, m
W_{g} - inner width of gas chamber, m
L_{d} - inner length of digester, m
W_{d} - inner width of digester, m
V_{s} - effective gas chamber volume, m^{3}
w - gas chamber wall thickness, cm
h - height of pyramidal roof, m
H_{g} - height of gas chamber, m
H_{p} - desired prressure head, m

BIOMASS COOKSTOVE

Design Power $\mathrm{P}_{\mathrm{d}}=0.7\left(\mathrm{P}_{\mathrm{c}}+\mathrm{P}_{\mathrm{v}}\right)$	P_{d} - design power, $\mathrm{KCal} / \mathrm{hr}$ P_{c} - chracoal power, $\mathrm{KCal} / \mathrm{hr}$ P_{v} - max volatile, $\mathrm{KCal} / \mathrm{hr}$
Power Output $\mathrm{P}_{\mathrm{o}}=\mathrm{F}_{\mathrm{c}} \mathrm{H}_{\mathrm{f}} / \mathrm{T}_{\mathrm{b}}$	P_{o} - power output, $\mathrm{KCal} / \mathrm{hr}$ F_{c} - Fuel charges, kg H_{f} - heating value of fuel; $\mathrm{KCal} / \mathrm{kg}$ T_{b} - total burning time, hr
Burning Rate $\mathrm{BR}=\mathrm{P}_{\mathrm{o}} / \mathrm{H}_{\mathrm{f}}$	BR - burning rate, $\mathrm{kg} / \mathrm{hr}$ P_{o} - power output, $\mathrm{KCal} / \mathrm{hr}$ H_{f} - heating value of fuel; $\mathrm{KCal} / \mathrm{kg}$
Fuel Consumption Rate $\mathrm{FCR}=\mathrm{W}_{\mathrm{fc}} / \mathrm{T}_{\mathrm{o}}$	FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ W_{fc} - Weight of fuel consumed, kg T_{o} - operating time, hr
Power Density $\mathrm{PD}=\mathrm{FCR} / \mathrm{Ag}_{\mathrm{g}}$	PD - power density, $\mathrm{kg} / \mathrm{hr}-\mathrm{m}^{2}$ FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ A_{g} - area of grate, m^{2}
Height of Fuel Bed $\mathrm{H}_{\mathrm{fb}}=\mathrm{F}_{\mathrm{c}} /\left(\mathrm{p} \rho_{\mathrm{f}} \mathrm{~A}_{\mathrm{b}}\right)$	H_{fb} - height of the fuel bed, m F_{c} - fuel charges, kg p - packing density, decimal ρ_{f} - density of fuel, $\mathrm{kg} / \mathrm{h}^{3}$ A_{b} - area of fuel bed, m^{2}
Area of the Fuel Bed $\mathrm{A}_{\mathrm{fb}}=\mathrm{P}_{\mathrm{d}} / \mathrm{PD}$	A_{fb} - area of the fuel bed, m^{2} P_{d} - design power, $\mathrm{KCal} / \mathrm{hr}$ PD - power density, $\mathrm{KCal} / \mathrm{hr}-\mathrm{m}^{2}$

BIOMASS COOKSTOVE

Flame Height $\mathrm{FH}=\mathrm{CP}^{2 / 5}$	```FH - flame height, mm C - grate constant, \(76 \mathrm{~mm} / \mathrm{KW}\) for fire with grate, and \(110 \mathrm{~mm} / \mathrm{KW}\) for fire without grate P - power output, \(\mathrm{KCal} / \mathrm{hr}\)```
Cooking Time $\mathrm{CT}=550 \mathrm{M}_{\mathrm{f}}{ }^{0.38}$	CT - cooking time, sec M_{f} - mass of food, kg
Maximum Power $P_{\max }=\frac{\mathrm{M}_{\mathrm{f}} \mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)}{\mathrm{T}_{\mathrm{c}} \xi_{\mathrm{t}}}$	$\mathrm{P}_{\text {max }}$ - maximum power, $\mathrm{KCal} / \mathrm{hr}$ M_{f} - mass of food, kg C_{p} - specific heat of food, $\mathrm{KCal} / \mathrm{kg}-\mathrm{C}$ T_{f} - final temperature of food, C T_{i} - initial temperature of food, C T_{c} - cooking time, hr ξ - thermal efficiency of the stove, decimal
Thermal Efficiency $\xi_{\mathrm{t}}=\frac{\mathrm{M}_{\mathrm{w}} \mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)+\mathrm{W}_{\mathrm{e}} \mathrm{H}_{\mathrm{V}}}{\mathrm{~W}_{\mathrm{FC}} \mathrm{H}_{\mathrm{VF}}} \times 100$	ξ_{t} - thermal efficiency, \% M_{w} - mass of water, kg C_{p} - specific heat of water, $1 \mathrm{KCal} / \mathrm{kg}-\mathrm{C}$ T_{f} - final temperature of water, C T_{i} - initial temperature of water, C W_{e} - weight of water evaporated, kg H_{v} - heat of vaporization of water, $540 \mathrm{KCal} / \mathrm{kg}$ W_{FC} - weight of fuel consumed, kg H_{VF} - heating value of fuel, $\mathrm{KkCal} / \mathrm{kg}$

BIOMASS FURNACE

Sensible Heat $\mathrm{Q}_{\mathrm{s}}=\mathrm{MC} \mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)$	Q_{s} - sensible heat, KCal M - mass of material, kg C_{p} - specific heat of material, $\mathrm{KCal} / \mathrm{kg}-\mathrm{C}$ T_{f} - final temperature of material, C T_{i} - initial temperature of material, C
Latent Heat of Vaporization $\mathrm{Q}_{1}=\mathrm{m} \mathrm{H}_{\mathrm{fg}}$	$\begin{aligned} & \mathrm{Q}_{1}-\text { latent heat of vaporization, } \mathrm{KCal} / \mathrm{hr} \\ & \mathrm{~m} \text { - mass of material, } \mathrm{kg} \\ & \mathrm{H}_{\mathrm{fg}} \text { - heat of vaporization of material, } \mathrm{KCal} / \mathrm{kg} \end{aligned}$
Design Fuel Consumption Rate $\mathrm{FCR}_{\mathrm{d}}=\mathrm{Q}_{\mathrm{r}} /\left(\mathrm{HVF} \xi_{\mathrm{t}}\right)$	$\mathrm{FCR}_{\mathrm{d}}$ - design fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ Q_{r} - heat required for the system, $\mathrm{KCal} / \mathrm{hr}$ HVF - heating value of fuel, $\mathrm{KCal} / \mathrm{kg}$ ξ_{t} - thermal efficiency of the furnace, decimal
Actual Fuel Consumption Rate $\mathrm{FCR}_{\mathrm{a}}=\mathrm{W}_{\mathrm{fc}} / \mathrm{T}_{\mathrm{o}}$	$\mathrm{FCR}_{\mathrm{a}}$ - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ W_{fc} - Weight of fuel consumed, kg T_{o} - operating time, hr
Fuel Consumption Rate for Rice Husk Fueled Inclined Grate Furnace with Heat Exchanger $\mathrm{FCR}=(1000 \mathrm{BR} \times \mathrm{Ag}) /(\xi \mathrm{f} x \xi \mathrm{he})$	FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ BR - burning rate, $40-50 \mathrm{~kg} / \mathrm{hr}-\mathrm{m} 2$ Ag - grate area, m2 $\xi \mathrm{f}$ - furnace efficiency, 50 to 70% ξ he - heat exchanger efficiency, $70-80 \%$
Fuel Consumption Rate for Rice Husk Fueled Inclined Grate Furnace without Heat Exchanger $\mathrm{FCR}=(100 \mathrm{BR} \times \mathrm{Ag}) / \xi \mathrm{f}$	FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ BR - burning rate, $40-50 \mathrm{~kg} / \mathrm{hr}-\mathrm{m} 2$ Ag - grate area, m2 $\xi \mathrm{f}$ - furnace efficiency, 50 to 70%

BIOMASS FURNACE

Burning Rate $\mathrm{BR}=\mathrm{FCR} / \mathrm{A}_{\mathrm{g}}$	BR - burning rate, $\mathrm{kg} / \mathrm{hr}-\mathrm{m}^{2}$ FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ A_{g} - area of grate; m^{2}
Power Density $\mathrm{PD}=\mathrm{FCR} / \mathrm{A}_{\mathrm{g}}$	PD - power density, $\mathrm{kg} / \mathrm{hr}-\mathrm{m}^{2}$ FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ A_{g} - area of grate, m^{2}
Area of the Fuel Bed $\mathrm{A}_{\mathrm{fb}}=\mathrm{P}_{\mathrm{d}} / \mathrm{BR}$	A_{fb} - area of the fuel bed, m^{2} P_{d} - design power, $\mathrm{KCal} / \mathrm{hr}$ BR - burning rate, $\mathrm{KCal} / \mathrm{hr}^{-\mathrm{m}^{2}}$
Air Flow Rate Requirement $\mathrm{AFR}=\mathrm{FCR} \mathrm{~S}_{\mathrm{a}}$	AFR - airflow rate, $\mathrm{kg} / \mathrm{hr}$ FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ S_{a} - stoichiometric air requirement, kg air per kg fuel
Thermal Efficiency $\xi_{\mathrm{t}}=\frac{\mathrm{Q}_{\mathrm{s}}}{\mathrm{~F}_{\mathrm{CR}} \mathrm{H}_{\mathrm{VF}}} \times 100$	ξ_{t} - thermal efficiency, \% Q_{s} - heat supplied, $\mathrm{KCal} / \mathrm{hr}$ F_{CR} - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ H_{VF} - heating value of fuel, $\mathrm{KCal} / \mathrm{kg}$
Burning Efficiency $\xi_{\mathrm{b}}=\frac{\mathrm{H}_{\mathrm{v}}-\mathrm{H}_{\mathrm{r}}}{\mathrm{H}_{\mathrm{v}}} \times 100$	ξ_{b} - burning efficiency, \% H_{V} - heating value of fuel, $\mathrm{KCal} / \mathrm{kg}$ H_{r} - heating value of ash residue, $\mathrm{KCal} / \mathrm{kg}$

BOARDER IRRIGATION

Maximum Stream Size per Foot Width of Boarder Strip	$Q_{\text {max }}$ - maximum stream size per foot of width of the boarder strip, cfs
$\mathrm{Q}_{\max }=0.06 \mathrm{~S}^{0.75}$	$\mathrm{~S}-$ slope, \%

CHAIN TRANSMISSION

Speed and Number of Teeth $\mathrm{N}_{\mathrm{r}} \mathrm{~T}_{\mathrm{r}}=\mathrm{N}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}}$	N_{r} - speed of driver sprocket, rpm N_{n} - speed of driven sprocket, rpm $\mathrm{T}_{\mathrm{r}}-$ no. of teeth of driver sprocket T_{n} - no. of teeth of driven sprocket
$\begin{aligned} & \text { Length of Chain } \\ & L=2 \mathrm{C}+\left(\frac{\mathrm{T}_{2}+\mathrm{T}_{1}}{2}\right)+\binom{\mathrm{T}_{2}-\mathrm{T}_{1}}{4 \pi^{2} \mathrm{C}} \end{aligned}$	L - chain length, pitches C - center distance between sprockets, pitches $\mathrm{T}_{2}-$ no. of teeth on larger sprocket T_{1} - no. of teeth on smaller sprocket
Length of Driving Chain $L=2 C_{p}+\frac{T}{2}+\frac{t}{2}+\left(\frac{T-t}{2 \pi}\right)\left(\frac{1}{C_{p}}\right)$	L - length of chain in pitches C_{p} - center to center distances in pitches T - no. of teeth on larger sprocket t - no. of teeth on smaller sprocket

CHAIN TRANSMISSION

Pitch Diameter of Sprocket $P D=\frac{P}{\sin \left(180 / N_{t}\right)}$	PD - pitch diameter of sprocket, inches P - pitch, inch N_{t} - number of teeth of sprockets
Chain Pull $\mathrm{CP}=1000(\mathrm{P} / \mathrm{V})$	CP - chain pull, kg P - chain power, watts V - chain velocity, m / s
Chain Speed $\mathrm{V}=\mathrm{pTN} / 376$	V - chain speed, m / s p - chain pitch, in T - number of teeth of sprocket N - sprocket speed, rpm
Speed Ratio $\mathrm{R}_{\mathrm{s}}=\mathrm{T}_{\mathrm{n}} / \mathrm{T}_{\mathrm{r}}$	R_{s} - speed ratio T_{n} - driven sprocket, inches T_{r} - driver sprocket, inches
Design Power $\mathrm{DP}=\mathrm{P}_{\mathrm{t}} \mathrm{~S} / \mathrm{MSF}$	DP - design power, Watts P_{t} - power to be transmitted, Watts S - service factor, 1.0 to 1.7 MSF - multiple strand factor, 1.7 to 3.3 @ 2 to 4 strands

CHAIN TRANSMISSION

Power Rating Required $P R=\frac{D P \text { DL }}{15,000}$	$\begin{aligned} & \text { PR - Power rating required, Watts } \\ & \text { DP - design power, Watts } \\ & \text { DL - design life, hours } \end{aligned}$
Horsepower Capacity (At Lower Speed) $\mathrm{HP}=0.004 \mathrm{~T}_{1}^{1.08} \mathrm{~N}_{1}{ }^{0.9} \mathrm{P}^{3}-0.007 \mathrm{P}$	HP - horsepower capacity, hp T_{1} - number of teeth of smaller sprocket N_{1} - speed of smaller sprocket, rpm P - chain pitch, inches
Horsepower Capacity (At Higher Speed) $\mathrm{HP}=\frac{1700 \mathrm{~T}_{1}{ }^{1.5} \mathrm{P}^{0.8}}{\mathrm{~N}_{1}{ }^{1.5}}$	HP - horsepower capacity, hp $\mathrm{T}_{1}-$ number of teeth of smaller sprocket N_{1} - speed of smaller sprocket, rpm P - chain pitch, inches
Center Distance $\begin{aligned} C= & \frac{P}{8}\left[2 L_{p}-T-t\right. \\ & +\sqrt{\left.\left(2 L_{p}-T-t\right)^{2}-0.810(T-t)^{2}\right]} \end{aligned}$	C - center distance in mm P - pitch of chain in mm L_{p} - length of chain in pitches T - number of teeth in large sprocket t - number of teeth in small sprocket

CONSERVATION STRUCTURES, DAMS AND RESREVIOR

Capacity of drop spillway $\mathrm{q}=0.55 \mathrm{C} \mathrm{~L} \mathrm{~h}^{3 / 2}$	q - discharge, cubic meter per second C - weir coefficient L - weir length, meter h - depth of flow over the crest, meter
Total width of the dam $\mathrm{W}=0.4 \mathrm{H}+1$	W - top width, meters H - maximum height of embankment, meters
Wave height $\mathrm{H}=0.014\left(\mathrm{D}_{\mathrm{f}}\right)^{1 / 2}$	h - height of the wave from through to crest under ,maximum wind velocity, meters D_{f} - fetch or exposure, meters
Compaction and settlement $\mathrm{V}=\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{o}}$	$\begin{aligned} & \mathrm{V}=\text { total in-place volume, } \mathrm{m}^{3} \\ & \mathrm{~V}_{\mathrm{s}}=\text { volume of solid particles, } \mathrm{m}^{3} \\ & \mathrm{~V}_{\mathrm{o}}=\text { volume of voids, either air or water, } \mathrm{m}^{3} \end{aligned}$

CONVEYANCE CHANNEL

Continuity Equation $\mathrm{Q}=\mathrm{AV}$	$\begin{aligned} & \text { Q - discharge, } \mathrm{m}^{3} / \mathrm{sec} \\ & \text { A - cross-sectional area of the channel, } \mathrm{m}^{2} \\ & \text { V - velocity of water, } \mathrm{m} / \mathrm{sec} \end{aligned}$
Manning Equation $\mathrm{V}=(1.00 / \mathrm{n}) \mathrm{R}^{2 / 3} \mathrm{~S}^{1 / 2}$	V-velocity, m/sec n - Manning's coefficient, 0.010 to 0.035 R - hydraulic radius, m S - slope of water surface
Chezy Equation $V=C(R S)^{1 / 2}$	V - flow velocity C - coefficient of roughness, 50 to 180 R - hydraulic radius, m S - slope of water surface, decimal
Hydraulic Radius $\mathrm{R}=\mathrm{A} / \mathrm{P}$	R - hydraulic radius, m A - cross-sectional area of flow, m^{2} P - wetted perimeter, m
Best Hydraulic Cross-Section $\mathrm{b}=2 \mathrm{~d} \tan (\theta / 2)$	b - bottom width of channel, m d - depth of water in the canal, m θ - angle between the side slope and the horizontal

CONVEYANCE CHANNEL

Cross-Sectional Area of Channel $A=b d+z d^{2}:$ Trapezoidal $\mathrm{A}=\mathrm{zd}^{2} \quad:$ Triangular $\mathrm{A}=2 / 3+\mathrm{td}:$ Parabolic	A - cross sectional area, m^{2} b - base width of the channel, m d - depth of water, m z - canal slope h / d, decimal t - top width, m
Wetted Perimeter of Channel $W P=b+2 d\left(z^{2}+1\right)^{1 / 2}:$ Trapezoidal $\mathrm{WP}=2 \mathrm{~d}\left(\mathrm{z}^{2}+1\right)^{1 / 2} \quad:$ Triangular $\mathrm{WP}=\mathrm{t}+\left(8 \mathrm{~d}^{2} / 3 \mathrm{t}\right) \quad:$ Parabolic	WP - wetted perimeter, m b - base width of the channel, m d - depth of water, m z - canal slope h / d, decimal t - top width, m
Top Width $\mathrm{t}=\mathrm{b}+2 \mathrm{dz} \quad$: Trapezoidal $\mathrm{t}=2 \mathrm{dz} \quad:$ Triangular $\mathrm{t}=\mathrm{A} /(0.67 \mathrm{~d}):$ Parabolic	t - top width, m b - base width of the channel, m d - depth of water, m z - canal slope h / d, decimal A - cross sectional area, m^{2}
Discharge (Float Method) $\mathrm{Q}=\mathrm{CA} \mathrm{~V}_{\max }$	Q - discharge, $\mathrm{m}^{3} / \mathrm{s}$ C - coefficient, $2 / 3$ A - cross-sectional area of the stream, m^{2} $\mathrm{V}_{\text {max }}$ - average maximum velocity of stream, m / s

CORN SHELLER

Kernel-Ear Corn Ratio $\mathrm{R}=\left(\mathrm{W}_{\mathrm{k}} / \mathrm{W}_{\mathrm{ec}}\right)$	R - grain ratio, decimal W_{k} - weight of kernel, grams $\mathrm{W}_{\text {ec }}$ - weight of ear corn, grams
Actual Capacity $\mathrm{C}_{\mathrm{a}}=\mathrm{W}_{\mathrm{s}} / \mathrm{T}_{\mathrm{o}}$	C_{a} - actual capacity, $\mathrm{kg} / \mathrm{hr}$ W_{s}-weight of shelled kernel, kg T_{o} - operating time, hr
Corrected Capacity $\mathrm{C}_{\mathrm{c}}=\frac{100-\mathrm{MC}_{\mathrm{o}}}{----------\mathrm{MC}_{\mathrm{r}}} \underset{100-\mathrm{M}_{\mathrm{a}}}{ }$	C_{c} - corrected capacity, $\mathrm{kg} / \mathrm{hr}$ MC_{o} - observed moisture content, \% MC_{r} - reference MC, 20\% P - kernel purity, \% C_{a} - actual capacity, $\mathrm{kg} / \mathrm{hr}$
Purity $\mathrm{P}=\left(\mathrm{W}_{\mathrm{c}} / \mathrm{W}_{\mathrm{u}}\right) 100$	$\begin{aligned} & \mathrm{P} \text { - purity, } \% \\ & \mathrm{~W}_{\mathrm{u}}-\text { weight of uncleaned kernel, grams } \\ & \mathrm{W}_{\mathrm{c}} \text { - weight of cleaned kernel, grams } \end{aligned}$
Total Losses $\mathrm{L}_{\mathrm{t}}=\mathrm{L}_{\mathrm{b}}+\mathrm{L}_{\mathrm{s}}+\mathrm{L}_{\mathrm{u}}+\mathrm{L}_{\mathrm{sc}}$	L_{t} - total losses, kg L_{b} - blower loss, kg L_{s} - separation loss, kg L_{sc} - scattering loss, kg L_{u} - unthreshed loss, kg

CORN SHELLER

Shelling Efficiency $\xi_{\mathrm{s}}=\frac{\mathrm{W}_{\mathrm{c}}+\mathrm{L}_{\mathrm{b}}+\mathrm{L}_{\mathrm{s}}+\mathrm{L}_{\mathrm{sc}}}{\mathrm{~W}_{\mathrm{c}}+\mathrm{L}_{\mathrm{b}}+\mathrm{L}_{\mathrm{s}}+\mathrm{L}_{\mathrm{u}}+\mathrm{L}_{\mathrm{s}}} \times 100$	ξ_{s} - shelling efficiency,\% W_{c} - weight of clean shelled kernel, kg L_{b} - blower loss, kg L_{s} - separation loss, kg L_{sc} - scattering loss, kg L_{u} - unthreshed loss, kg
Fuel Consumption $\mathrm{F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{u}} / \mathrm{t}_{\mathrm{o}}$	F_{c} - fuel consumption, Lph F_{u} - amount of fuel used, liters T_{o} - operating time, hrs
Shelling Recovery $\mathrm{S}_{\mathrm{r}}=\frac{\mathrm{W}_{\mathrm{c}}}{\mathrm{~W}_{\mathrm{c}}+\mathrm{L}_{\mathrm{b}}+\mathrm{L}_{\mathrm{s}}+\mathrm{L}_{\mathrm{u}}+\mathrm{L}_{\mathrm{s}}} \times 100$	S_{r} - threshing recovery, \% W_{c} - weight of clean shelled kernels, kg L_{b} - blower loss, kg L_{s} - separation loss, kg L_{sc} - scattering loss, kg L_{u} - unthreshed loss, kg
Cracked Kernels $\mathrm{C}_{\mathrm{k}}=\mathrm{N}_{\mathrm{ck}} 100 / 100 \text { kernel sample }$	C_{k} - percentage cracked kernel, \% N_{ck} - number of cracked kernels
Mechnically Damaged Kernel $\mathrm{D}_{\mathrm{k}}=\mathrm{N}_{\mathrm{dk}} 100 / 100 \text { kernel sample }$	D_{k} - percentage damage kernel, \% N_{dk} - number of damaged kernels

COST-RETURN ANALYSIS

Investment Cost $\mathrm{IC}=\mathrm{MC}+\mathrm{PMC}$	$\begin{aligned} & \text { IC - investment cost, P } \\ & \text { EC - equipment cost, P } \\ & \text { PMC - prime mover cost, P } \end{aligned}$
Total Fixed Cost $\mathrm{FC}_{\mathrm{t}}=\mathrm{D}+\mathrm{I}+\mathrm{RM}+\mathrm{i}$	FC - total fixed cost, P/day D - depreciation, P/day I - interest on investment, $\mathrm{P} /$ day RM - repair and maintenance, $\mathrm{P} /$ day i - insurance, $\mathrm{P} /$ day
Total Variable Cost $\mathrm{VC}_{\mathrm{t}}=\mathrm{L}+\mathrm{F}+\mathrm{E}$	VC_{t} - total variable cost, $\mathrm{P} /$ day L - labor cost, P/day F - fuel cost, $\mathrm{P} /$ day E-electricity, P/day
Total Cost $\mathrm{TC}=\mathrm{FC}_{\mathrm{t}}+\mathrm{VC}_{\mathrm{t}}$	TC - total cost, P/day FC_{t} - total fixed cost, $\mathrm{P} /$ day VC_{t} - total variable cost, $\mathrm{P} /$ day
Operating Cost $\mathrm{OC}=\mathrm{TC} / \mathrm{C}$	OC - operating cost, P / ha or P / kg TC - total cost, P/day C - capacity, $\mathrm{Ha} /$ day or $\mathrm{Kg} /$ day

COST-RETURN ANALYSIS

Depreciation (Staight Line) $D=\frac{I C-0.1 I C}{365 L S}$	D - depreciation, P/day IC - investment cost, P LS - life span, years
Interest on Investment $\mathrm{I}=\mathrm{R}_{\mathrm{i}} \mathrm{IC} / 365$	I - interest on investment, P/day R_{i} - interest rate, 0.24/year IC - investment cost, P
Repair and Maintenance $\mathrm{RM}=\mathrm{R}_{\mathrm{rm}} \mathrm{IC} / 365$	$\begin{aligned} & \mathrm{RM} \text { - repair and maintenance, } \mathrm{P} / \text { day } \\ & \mathrm{R}_{\mathrm{rm}} \text { - repair and maintenance rate, } 0.1 / \text { year } \\ & \mathrm{IC} \text { - investment cost, } \mathrm{P} \end{aligned}$
Insurance $\mathrm{i}=\mathrm{R}_{\mathrm{i}} \mathrm{IC} / 365$	$\begin{aligned} & \mathrm{i} \text { - insurance, } \mathrm{P} / \text { day } \\ & \mathrm{R}_{\mathrm{i}} \text { - insurance rate, } 0.03 / \text { year } \\ & \mathrm{IC} \text { - investment cost, } \mathrm{P} \end{aligned}$
Labor Cost $\mathrm{L}=\mathrm{NL} \mathrm{~S}_{\mathrm{a}}$	$\begin{aligned} & \mathrm{L} \text { - labor cost, P/day } \\ & \mathrm{NL} \text { - number of laborers } \\ & \mathrm{S}_{\mathrm{a}} \text { - salary, P/day } \end{aligned}$
Fuel Cost $\mathrm{F}=\mathrm{W}_{\mathrm{f}} \mathrm{C}_{\mathrm{f}}$	$\begin{aligned} & \text { F - fuel cost, P/day } \\ & W_{f}-\text { weight of fuel used, kg } \\ & C_{f} \text { - cost of fuel, } \mathrm{P} / \mathrm{kg} \end{aligned}$

COST-RETURN ANALYSIS

Electricity $\mathrm{E}=\mathrm{E}_{\mathrm{c}} \mathrm{C}_{\mathrm{e}}$	E - cost of electricity, P/day E_{c} - electrical consumption, KW-hr C_{e} - cost of electricity, P/KW-hr
Net Income $\mathrm{NI}=(\mathrm{CR}-\mathrm{OC}) \mathrm{C} O P$	NI - net income, P/yr CR - custom rate, P / ha or P / kg OC - operating cost, P / ha or P / kg C - capacity, $\mathrm{Ha} /$ day or Kg /day OP - operating period, days/year
Payback Period $\mathrm{PBP}=\mathrm{IC} / \mathrm{NI}$	PBP - payback period, years IC - investment cost, P NI - net income, P / yr
Benefit Cost Ratio $\mathrm{BCR}=\mathrm{NI} /(\mathrm{TC} \mathrm{OP})$	BCR - benefit cost ratio, decimal NI - net income, P/year TC - total cost, P/day OP - operating period, days per year
Return on Investment $\mathrm{ROI}=(\mathrm{TC} / \mathrm{NI}) 100$	ROI - return on investment, \% TC - total cost, P/year NI - net income, P/year

CYCLONE SEPARATOR

Diameter of Cyclone Separator $D_{c}=\left(Q / 0.1 V_{t}\right)^{0.5}$	$\begin{aligned} & D_{c} \text { - diameter of cyclone separator, } m \\ & Q \text { - airflow, } \mathrm{m}^{3} / \mathrm{hr} \\ & \mathrm{~V}_{\mathrm{t}} \text { - velocity of air entering the cyclone, } \mathrm{m} / \mathrm{s} \end{aligned}$
Pressure Draft of the Cyclone $P_{d}=\frac{6.5 \mathrm{D}_{\mathrm{a}} \mathrm{~V}_{\mathrm{t}}^{2} \mathrm{~A}_{\mathrm{d}}}{\mathrm{D}_{\mathrm{s}}}$	P_{d} - pressure drop, mm D_{a} - air density, $1.25 \mathrm{~kg} / \mathrm{m}^{3}$ V_{t} - velocity of air entering the cyclone, m / s A_{d} - inlet area of the duct, m^{2} D_{s} - diameter of separator, m
Cyclone Cylinder Height (High Efficiency) $\mathrm{H}_{\mathrm{cy}}=1.5 \mathrm{D}_{\mathrm{c}}$	H_{cy} - cylinder height, m D_{c} - cyclone diameter, m
Inverted Cone Height (High Efficiency) $\mathrm{H}_{\mathrm{co}}=2.5 \mathrm{D}_{\mathrm{c}}$	H_{co} - cone height, m D_{c} - cyclone diameter, m
Air Duct Outlet Diameter (High Efficiency) $\mathrm{D}_{\mathrm{o}}=0.5 \mathrm{D}_{\mathrm{c}}$	D_{o} - air duct outlet diameter, m D_{c} - cyclone diameter, m

CYCLONE SEPARATOR

Air Duct Outlet Lower Height (High Efficiency) $\mathrm{HDO}_{1}=1.5 \mathrm{D}_{\mathrm{c}}$	HDO_{1} - lower height of air duct outlet, m D_{c} - cyclone diameter, m
Air Duct Outlet Upper Height (High Efficiency) $\mathrm{HDO}_{\mathrm{u}}=0.5 \mathrm{D}_{\mathrm{c}}$	HDO_{u} - upper height of air duct outlet, m D_{c} - cyclone diameter, m
Width of the Inlet Rectangular Square Duct (High Efficiency) $\mathrm{WD}=0.2 \mathrm{D}_{\mathrm{c}}$	WD - width of the inlet duct, m D_{c} - cyclone diameter, m
Height of the Inlet Rectangular Square Duct (High Efficiency) $\mathrm{HD}=0.5 \mathrm{D}_{\mathrm{c}}$	HD - height of the inlet duct, m D_{c} - cyclone diameter, m
Cylinder Height (Medium Efficiency) $\mathrm{H}_{\mathrm{cy}}=1.5 \mathrm{D}_{\mathrm{c}}$	H_{cy} - cylinder height, m D_{c} - cyclone diameter, m
Inverted Cone Height (Medium Efficiency) $\mathrm{H}_{\mathrm{co}}=2.5 \mathrm{D}_{\mathrm{c}}$	H_{co} - cone height, m D_{c} - cyclone diameter, m

CYCLONE SEPARATOR

Air Duct Outlet Diameter (Medium Efficiency) $\mathrm{D}_{\mathrm{o}}=0.75 \mathrm{D}_{\mathrm{c}}$	D_{o} - air duct outlet diameter, m D_{c} - cyclone diameter, m
Air Duct Outlet Lower Height (Medium Efficiency) $\mathrm{HDO}_{\mathrm{l}}=0.875 \mathrm{D}_{\mathrm{c}}$	HDO_{1} - lower height of air duct outlet, m D_{c} - cyclone diameter, m
Air Duct Outlet Upper Height (Medium Efficiency) $\mathrm{HDO}_{\mathrm{u}}=0.5 \mathrm{D}_{\mathrm{c}}$	HDO_{u} - upper height of air duct outlet, m D_{c} - cyclone diameter, m
Width of the Inlet Rectangular Square Duct (Medium Efficiency) $\mathrm{WD}=0.375 \mathrm{D}_{\mathrm{c}}$	WD - width of the inlet duct, m D_{c} - cyclone diameter, m
Height of the Inlet Rectangular Square Duct and Upper Cyclone Cylinder (Medium Efficiency) $\mathrm{HD}=0.75 \mathrm{D}_{\mathrm{c}}$	HD - height of the inlet duct, m D_{c} - cyclone diameter, m

DIFFERENTIAL CALCULUS

$$
\begin{aligned}
& \frac{d}{d x}(u+v)=\frac{d u}{d x}+\frac{d v}{d x} \\
& \frac{d}{d x} u / v=\frac{\frac{v d u}{d x}-\frac{u d v}{d x}}{v^{2}} \\
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\
& \frac{d}{d x} \text { u.v }=\frac{v d u}{d x}+\frac{u d v}{d x} \\
& -d-\left(u^{n}\right)=n u^{n-1} d u \\
& \mathrm{dx} \quad \mathrm{dx} \\
& \frac{d}{d x}(\ln u)=\frac{d u / d x}{u} \\
& \frac{d\left(a^{u}\right)}{d x}=a^{u} \cdot \ln a \cdot d u / d x \\
& \frac{d}{d x}\left(e^{u}\right)=e^{u} \cdot d u / d x \\
& e^{\ln u}=u \\
& e^{0}=1 \\
& \frac{\mathrm{~d}}{\mathrm{dx}}\left(\log 10^{\mathrm{u}}\right)=0.4343 \frac{\mathrm{du} / \mathrm{dx}}{\mathrm{u}} \\
& =\frac{\mathrm{du}}{\mathrm{~d}} \mathrm{dx} \cdot \log 10^{\mathrm{e}} \\
& \text { u } \\
& \frac{d(\sqrt{u})}{d x}=\frac{d u / d x}{2 \sqrt{ } u} \\
& \frac{d(\sin u)}{d x}=\cos u \cdot d u / d x \\
& \frac{d}{d x}(\cos u)=-\sin u \cdot d u / d x \\
& \frac{d(\tan u)}{d x}=\sec ^{2} u \cdot d u / d x \\
& \frac{d(\csc u)}{d x}=-\csc \cdot \cdot \cot u \cdot d u / d x \\
& \frac{d}{d x}(\sec u)=s e c u \cdot \tan u \cdot d u / d x \\
& \frac{d(\cot u)}{d x}=\csc ^{2} u \cdot d u / d x \\
& \frac{d}{d x}(\arcsin u)=\frac{d u / d x}{\sqrt{1}-u^{2}}
\end{aligned}
$$

DIFFERENTIAL CALCULUS

$$
\begin{aligned}
& \frac{\mathrm{d}(\arctan u)}{\mathrm{dx}}=\frac{\mathrm{du} / \mathrm{dx}}{1+\mathrm{u}^{2}} \\
& \frac{d(\operatorname{arcsec} u)}{d x}=\frac{d u / d x}{u \sqrt{u^{2}-1}} \\
& \frac{d}{d x}(\operatorname{arccsc} u)=\frac{-d u / d x}{u \sqrt{ } u^{2}-1} \\
& \frac{d}{d x}(\operatorname{arccot} u)=\frac{-d u / d x}{1+u^{2}} \\
& \frac{d}{d x}\left(\log a^{u}\right)=\frac{d u / d x}{d u} \cdot \log a^{e} \\
& \frac{d}{d x}(\arccos u)=-\frac{d u / d x}{\sqrt{1-u^{2}}} \\
& x^{m / n}=\left({ }^{n} \sqrt{ } x\right)^{m} \\
& \frac{d(\sin h u)}{d x}=\cos h u \cdot d u / d x \\
& \frac{d(\cosh u)}{d x}=\sin h u \cdot d u / d x \\
& \frac{d(\tan h u)}{d x}=\sec h^{2} u \cdot d u / d x \\
& \underline{d}(\csc h u)=-\csc h u \cot h u . d u / d x \\
& \overline{\mathrm{dx}} \\
& \frac{d(\sec h u)}{d x}=-\sec h u \operatorname{tn} h u . d u / d x \\
& \text { dx } \\
& \frac{d(\operatorname{coth} u)}{d x}=-\csc h^{2} u \cdot d u / d x \\
& \frac{d}{d x}(\arccos u)=\frac{-d u / d x}{\sqrt{1-u^{2}}} \\
& \frac{d(\cos h u)}{d x}=\sin h u . d u / d x \\
& \frac{d(\tan h u)}{d x}=\sec h^{2} u \cdot d u / d x
\end{aligned}
$$

DRIP IRRIGATION

Maximum Depth of Irrigation	$I_{d n}-$ maximum net depth of each irrigation application, mm
$\mathrm{I}_{\mathrm{dn}}=\mathrm{D}_{\mathrm{s}}\left[\left(\mathrm{F}_{\mathrm{c}}-\mathrm{W}_{\mathrm{p}}\right) / 100\right] \mathrm{D}_{\mathrm{d}} \mathrm{P}$	$\mathrm{D}_{\mathrm{s}}-$ depth of soil, m F_{c} - field capacity, \% W_{p} - wilting point, \% D_{d} - portion of the available moisture allowed to deplete, mm
P - area wetted, \% of total area	

DRIP IRRIGATION

Average Emitter Discharge	$\mathrm{Q}_{\mathrm{a}}-$ emitter discharge, $\mathrm{m}^{3} / \mathrm{hr}$ $\mathrm{k}-$ constant, 1 for metric unit $\mathrm{Q}_{\mathrm{a}}=\mathrm{k}\left[\mathrm{I}_{\mathrm{d}} \mathrm{S}_{\mathrm{e}} \mathrm{S}_{\mathrm{l}}\right] / \mathrm{I}_{\mathrm{t}}$ Lateral Flow Rate I_{d} - gross depth irrigation, m S_{e} - emitter spacing on line, m S_{l} - average spacing between lines, m $\mathrm{I}_{\mathrm{t}}-$ operational unit during each of irrigation cycle, hrs
$3600 \mathrm{~N}_{\mathrm{e}} \mathrm{Q}_{\mathrm{a}}$	Q_{1} - lateral flow rate, lps $\mathrm{N}_{\mathrm{e}}-$ number of emitters on laterals Q_{a} - emitter discharge, $\mathrm{m}^{3} / \mathrm{hr}$

ELECTRICITY

Power (DC) $\mathrm{P}=\mathrm{VI}$	P - power, Watts V - voltage, volt I - current, Ampere
Power (AC) $\mathrm{P}=\mathrm{VI}$	P - power, volt-ampere V - voltage, volt I - current, Ampere
$\begin{gathered} \text { Power (AC) } \\ \text { P = V I p }{ }_{\mathrm{f}} \end{gathered}$	P - power, Watts V - voltage, volt I - current, Ampere $\mathrm{p}_{\mathrm{f}}-$ power factor
Ohms Law (DC) $\mathrm{I}=\mathrm{V} / \mathrm{R}$	I - current, Ampere V- voltage, volt R - resistance, ohms
Ohms Law (AC) $\mathrm{I}=\mathrm{V} / \mathrm{Z}$	I - current, Ampere V - voltage Z - impedance
Power $\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$	P - power, Watts I - current, Ampere R - resistance, ohms
Power $\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}$	P - power, Watts V - voltage, volts R - resistance, ohms

ELECTRICITY

Resistance $\mathrm{R}=\mathrm{P} / \mathrm{I}^{2}$	P - power, Watts I - current, Ampere R - resistance, ohms
Resistance $\mathrm{R}=\mathrm{V}^{2} / \mathrm{P}$	P - power, Watts V - voltage, volts R - resistance, ohms
Voltage $\mathrm{V}=\mathrm{P} / \mathrm{I}$	V - voltage, volt P - power, Watts I - current, Ampere
Voltage (Series) $V_{t}=V_{1}+V_{2}+V_{3} \ldots$	V_{t} - total voltage, volt V_{1} - voltage 1, volt V_{2} - voltage 2, volt $\mathrm{V}_{3}-$ voltage 3, volt
Resistance (Series) $\mathrm{R}_{\mathrm{t}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3} \ldots$	R_{t} - total resistance, ohms R_{1} - resistance 1 , ohms R_{2} - resistance 2, ohms R_{3} - resistance 3, ohms
Current (Series) $\mathrm{I}_{\mathrm{t}}=\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}$	I_{t} - total current, ampere I_{1} - current 1, Ampere $\mathrm{I}_{2}-$ current 2, Ampere I_{3} - current 3 , Ampere

ELECTRICITY

Voltage (Parallel) $\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}$	$\mathrm{V}_{\mathrm{t}}-$ total voltage, volt V_{1} - voltage 1, volt V_{2} - voltage 2, volt V_{3} - voltage 3, volt
Resistance (Parallel) $\mathrm{R}_{\mathrm{t}}=\frac{1}{1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}}$	R_{t} - total resistance, ohms R_{1} - resistance 1, ohms R_{2} - resistance 2, ohms R_{3} - resistance 3, ohms
Current (Parallel) $\mathrm{I}_{\mathrm{t}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$	I_{t} - total current, Ampere I_{1} - current 1, Ampere $\mathrm{I}_{2}-$ current 2, Ampere I_{3} - current 3, Ampere
Energy $\mathrm{E}=\mathrm{P} T$	E - energy, Watt-hour P - power, Watts T-time, hour

ELECTRICITY

Current (Parallel) $\mathrm{I}_{\mathrm{t}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$	$\mathrm{I}_{\mathrm{t}}-$ total current, Ampere I_{1} - current 1, Ampere $\mathrm{I}_{2}-$ current 2, Ampere I_{3} - current 3, Ampere
Energy $\mathrm{E}=\mathrm{P} T$	E - energy, Watt-hour P - power, Watts T-time, hour
Power Factor $\begin{aligned} p_{f} & =---------=\begin{array}{c} E I \cos \theta \\ P_{a} \\ \\ \\ \end{array}=\cos \mathrm{C} / \mathrm{Z} \end{aligned}$	p_{f} - power factor E-voltage, volt I - current, ampere P_{r} - real power, watts P_{a} - apparent power, watts R - resistance, ohms Z - impedance, ohms
KVA (Single Phase Circuit) $\mathrm{KVA}=\frac{\mathrm{E} \mathrm{I}}{1000}$	KVA - kilovolt ampere E - voltage, volt I - current, ampere
KVA (Three-Phase Circuit) $\mathrm{KVA}=\frac{1.732 \mathrm{E} \mathrm{I}}{1000}$	KVA - kilovolt ampere E - voltage, volt I - current, ampere
Horsepower Output (Single-Phase) $\mathrm{HP}=\frac{\eta \mathrm{IE} \mathrm{p}}{\mathrm{f}} \text { }$	HP - power output, hp E - voltage, volt I - current, amperes η - efficiency, decimal $\mathrm{p}_{\mathrm{f}}-$ power factor, decimal

ELECTRIC MOTOR

Horsepower Output (Three-Phase) $\mathrm{HP}=\sqrt{3} \frac{\eta \mathrm{I} \mathrm{E} \mathrm{p}}{\mathrm{f}}{ }_{746}$	HP - power output, hp E - voltage, volt I - current, amperes η - efficiency, decimal p_{f} - power factor, decimal
Power in Circuit (Single-Phase) $P=E I$	P - power, watts E-voltage, volts I - current, ampere
Power in Circuit (Three Phase) $P=\sqrt{3} E I$	P - power, watts E-voltage, volts I - current, ampere
KVA (Single-Phase Circuit) $\mathrm{KVA}=\frac{\mathrm{E} \mathrm{I}}{1000}$	KVA - kilovolt ampere E - voltage, volt I - current, ampere
KVA (Three-Phase Circuit) $\mathrm{KVA}=\frac{1.732 \mathrm{E} \mathrm{I}}{1000}$	KVA - kilovolt ampere E - voltage, volt I - current, Ampere
Horsepower Output (Single-phase) $\mathrm{HP}=\frac{\eta \mathrm{I} \mathrm{E} \mathrm{p}}{\mathrm{f}} \text { }$	HP - power output, hp E - voltage, volt I - current, amperes η - efficiency, decimal $\mathrm{p}_{\mathrm{f}}-$ power factor, decimal

ELECTRIC MOTOR

Horsepower Output (Three-phase) $\mathrm{HP}=\sqrt{3} \frac{\eta \mathrm{I} \mathrm{E} \mathrm{p}}{\mathrm{f}} \text { }$	HP - power output, hp E - voltage, volt I - current, amperes η - efficiency, decimal $\mathrm{p}_{\mathrm{f}}-$ power factor, decimal
$\begin{gathered} \text { Slip (Three-Phase Motor) } \\ \mathrm{S}=[\mathrm{Ns}-\mathrm{N}] / \mathrm{Ns} \end{gathered}$	$\begin{aligned} & \mathrm{S} \text { - slip, decimal } \\ & \mathrm{Ns} \text { - motor synchronus speed, rpm } \\ & \mathrm{N} \text { - actual motor speed, rpm } \end{aligned}$
Power in Circuit (Single-Phase) $\mathrm{P}=\mathrm{E} I$	P - power, Watts E - voltage, volts I - current, Ampere
Power in Circuit (Three-Phase) $\mathrm{P}=\sqrt{3} \mathrm{E} I$	P - power, Watts E - voltage, volts I - current, Ampere
Rotr Speed (Synchronous Motor) $\mathrm{Ns}=120[\mathrm{f} / \mathrm{P}]$	Ns - rotor speed, rpm F - frequency of stator volatge, hertz $\mathrm{P}-\mathrm{n} \quad$ umber of pole
Motor Size to Replace Engine $\mathrm{MHP}=\mathrm{EHP} 2 / 3$	MHP - motor power, hp EHP - engine power, hp
Motor Size to Replace Human $\mathrm{MHP}=\mathrm{N}_{\mathrm{H}} 1 / 4$	MHP - motor power, hp N_{H} - number of human

ELECTRIFICATION

Energy Loss in Lines $\mathrm{L}_{\mathrm{e}}=\frac{\mathrm{V}_{1} \mathrm{I} \mathrm{~T}_{\mathrm{o}}}{1000}$	L_{e} - energy loss, KW-hr V_{1} - voltage loss in line, volt I - current flowing, Amp T_{o} - operating time, hr
Area Circular Mill $\mathrm{A}_{\mathrm{cm}}=\mathrm{D}^{2}$	A_{cm} - area, circular mill D - diameter, mill or $1 / 1000$ of an inch
Energy Consumption (Disk Meter) $\mathrm{EC}=\frac{60 \mathrm{~K}_{\mathrm{h}} \mathrm{D}_{\mathrm{rev}}}{1000 \mathrm{t}_{\mathrm{c}}}$	$\mathrm{EC}=$ electrical consumption, KW-hr K_{h} - meter disk factor, 2.5 $\mathrm{D}_{\mathrm{rev}}$ - number of revolutions, rev T_{c} - counting period, min
Minimum Number of Convenience Outlet $\mathrm{N}_{\mathrm{co}}=\mathrm{P}_{\mathrm{f}} / 20$	N_{co} - minimum number of convenience outlet, pieces of duplex receptacle P_{f} - floor perimeter, ft
No. of Branch Circuit (15-amp) $\begin{gathered} \mathrm{N}_{\mathrm{bc}}=\mathrm{A}_{\mathrm{f}} / 500 \\ \mathrm{~N}_{\mathrm{bc}}=\mathrm{NO}_{\mathrm{gp}} / 10 \end{gathered}$	N_{bc} - number of branch circuit A_{f} - floor area, ft^{2} $\mathrm{NO}_{\mathrm{gp}}$ - number of general outlet

ELECTRIFICATION

No. of Branch Circuit (20 Amp) $\mathrm{N}_{\mathrm{bc}}=\mathrm{NO}_{\mathrm{sa}} / 8$	N_{bc} - number of branch circuit $\mathrm{NO}_{\text {sa }}$ - number of small appliance outlet
Resistance of Copper Wire $\mathrm{R}=\frac{10.8 \mathrm{~L}}{\mathrm{~A}}$	R - resistance in wire, ohms L - length of wire, ft A - cross sectional area of wire, cir mil
Wire Size Selection $A=---------------$	A - area of wire, circular mill N_{w} - number of wires L - length of wire, ft I - current flowing, amp V_{d} - allowable voltage drop, decimal equal to 0.02 adequate for all conditions E-voltage, volt
Lamp Lumen Required $\mathrm{L}_{1}=\frac{\mathrm{L}_{\mathrm{i}} \mathrm{~A}_{\mathrm{f}}}{\mathrm{CUSF}}$	L_{1} - lamp lumen required, lumen L_{i} - light intensity, foot candle A_{f} - floor area, ft^{2} CU - coefficient of utilization, 0.04 to 0.72 SF - service factor, 0.7
Maximum Lamp Spacing (Florescent Lamp) $\mathrm{M}_{\mathrm{S}}=\mathrm{C}_{\mathrm{i}} \mathrm{M}_{\mathrm{H}}$	M_{S} - maximum lamp spacing, ft C_{i} - lamp coefficient, 0.9 for RLM standard-dome frosted lamp and 1.0 for RLM standard silvered-bowl lamp M_{H} - Lamp height, ft
Maximum Lamp Spacing (Incandescent Lamp) $\mathrm{M}_{\mathrm{S}}=\mathrm{C}_{\mathrm{f}} \quad \mathrm{M}_{\mathrm{H}}$	M_{S} - maximum lamp spacing, ft C_{f} - lamp coefficient, 0.9 for Direct RLM with louvers, 1.0 for direct RLM 2-40 watts, and 1.2 for indirect-glass, plastic, metal M_{H} - lamp height, ft

ENGINE

Indicated Horsepower $\mathrm{IHP}=\frac{\mathrm{PLAN} \mathrm{n}}{33000 \mathrm{c}}$	IHP - indicated horsepower, hp P - mean effective pressure, psi L - length of stroke, ft A - area of bore, in^{2} N - crankshaft speed, rpm n - number of cylinder c - 2 for four stroke engine and 1 for two stroke engine
Piston Displacement $\mathrm{PD}=\frac{\pi \mathrm{D}^{2}}{4} \mathrm{Ln}$	PD - piston displacement, cm^{3} Dp - piston diameter, cm L - length of stroke, cm n - number of cylinders
Piston Displacement Rate $\mathrm{PDR}=2 \pi \mathrm{PD} \mathrm{~N}$	PDR - piston displacement rate, $\mathrm{cm}^{3} / \mathrm{min}$ PD - piston displacement, cm^{3} N - crankshaft speed, rpm
Compression Ratio $\mathrm{CR}=\frac{\mathrm{PD}+\mathrm{CV}}{\mathrm{CV}}$	CR - compression ratio PD - piston displacement, cm^{3} CV - clearance volume, cm^{3}
Brake Horsepower $\begin{aligned} \mathrm{BHP} & =\mathrm{IHP} \xi_{\mathrm{m}} \quad \text { or } \\ & =\mathrm{IHP}-\mathrm{FHP} \end{aligned}$	BHP - brake horsepower, hp IHP - indicated horsepower, hp ξ_{m} - engine mechanical efficiency, decimal FHP - friction horsepower, hp

ENGINE

Mechanical Efficiency $\xi_{\mathrm{m}}=\frac{\text { BHP }}{\mathrm{IHP}} \times 100$	BHP - brake horsepower, hp IHP - indicated horsepower, hp ξ_{m} - engine mechanical efficiency, decimal
Rate of Explosion $\mathrm{ER}=\frac{\mathrm{N}}{\mathrm{c}}$	ER - explosion rate, explosion per minute N - crankshaft speed, rpm C - 2 for four stroke engine
Thermal Efficiency, Theoritical $\xi_{\text {theo }}=\frac{\mathrm{C} \mathrm{~W}_{\mathrm{t}}}{\mathrm{Q}_{\mathrm{t}}} \times 100$	$\xi_{\text {theo }}$-theoretical thermal efficiency, \% W_{t} - theoretical work, kg-m Q_{t} - supplied heat quantity, $\mathrm{Kcal} / \mathrm{hr}$ C - conversion constant
Thermal Efficiency, Effective $\xi_{\text {eff }}=\frac{\mathrm{C} \mathrm{~N}_{\mathrm{e}}}{\mathrm{H}_{\mathrm{u}} \mathrm{~B}} \times 100$	$\xi_{\text {eff }}$ - effective thermal efficiency, \% N_{e} - Effective output, watt H_{u} - calorific value of fuel, $\mathrm{kCal} / \mathrm{kg}$ B - indicated work, $\mathrm{kg} / \mathrm{hr}$ C - conversion constant

ENGINE

Specific Fuel Consumption $S F C=\frac{V}{N_{e} t} S$	SFC - specific fuel consumption, $\mathrm{kg} / \mathrm{W}-\mathrm{sec}$ V - fuel consumption, m^{3} N_{e} - Brake output T-time, sec S - specific gravity of fuel, $\mathrm{kg} / \mathrm{m}^{3}$
Break Mean Effective Pressure $\mathrm{BMEP}=\frac{(75) 50 \mathrm{BHP}}{\mathrm{~L} \mathrm{~A} \mathrm{~N} \mathrm{n}}$	BMEP - brake mean effective pressure, $\mathrm{kg} / \mathrm{cm}^{2}$ BHP - brake horsepower, hp L - piston stroke, m A - piston area, cm^{2} N - number of power stroke per minute N - number of cylinders
Number of Times Intake Valve Open $\mathrm{TO}=\frac{\mathrm{N}}{\mathrm{c}}$	TO - number of time intake valve open N - crankshaft speed, rpm C - 2 for four stroke engine - 0 for two stroke engine
Piston Area $A_{p}=\frac{\pi D^{2}}{4}$	A_{p} - piston area, cm^{2} D - piston diameter, cm

ENGINE

Stroke to Bore Ratio $\mathrm{R}=\frac{\mathrm{S}}{\mathrm{~B}}$	R - stroke to bore ratio S - piston stroke, cm B - piston diameter, cm
BHP Correction Factor (Gasoline EngineCarburator or Injection) $\mathrm{K}_{\mathrm{g}}=\left(\begin{array}{c} 1013 \\ ------ \\ \mathrm{Pb} \end{array}\right) \mathrm{x} \quad \begin{gathered} \mathrm{T}+2^{--------} \\ 293 \end{gathered}$	$\mathrm{K}_{\mathrm{g}}-\mathrm{BHP}$ correction factor. Dmls T-ambient air temperature, C P_{b} - total atmospheric pressure, mb
BHP Correction Factor (Diesel Engine-4 Stroke Naturally Aspirated) $K_{d}=\begin{array}{cccc} 1013 & { }^{0.65} & T+273 & 0.5 \\ P_{b} & x & -------- & 293 \end{array}$	$\mathrm{K}_{\mathrm{d}}-$ BHP correction factor. Dmls T - ambient air temperature, C P_{b} - total atmospheric pressure, mb
Output Power $P_{o}=\frac{\mathrm{T} \mathrm{~N}}{974}$	P_{o} - power output, KW T - shaft torque, kg-m N - shaft speed, rpm

ENGINE

Fuel Consumption $\mathrm{F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{u}} / \mathrm{T}_{\mathrm{o}}$	F_{c} - fuel consumption, lph F_{u} - fuel used, liters T_{o} - total operating time, hrs
Specific Fuel Consumption $\mathrm{SFC}=\mathrm{F}_{\mathrm{c}} \rho_{\mathrm{f}} / \mathrm{P}_{\mathrm{s}}$	```SFC - specific fuel consumption, \(\mathrm{g} / \mathrm{KW}-\mathrm{hr}\) \(\mathrm{F}_{\mathrm{c}}\) - fuel consumption, lph \(\rho_{\mathrm{f}}\) - fuel density, \(\mathrm{kg} /\) liter \(\mathrm{P}_{\mathrm{s}}\) - shaft power, KW```
Fuel Equivalent Power $\mathrm{P}_{\mathrm{fe}}=\left[\mathrm{H}_{\mathrm{f}} \mathrm{~m}_{\mathrm{f}}\right] / 3600$	$\begin{aligned} & \mathrm{P}_{\mathrm{fe}}-\text { fuel equivalent power, } \mathrm{kW} \\ & \mathrm{H}_{\mathrm{f}}-\text { heating value of fuel, } \mathrm{kJ} / \mathrm{kg} \\ & \mathrm{~m}_{\mathrm{f}} \text { - rate of fuel consumption, } \mathrm{kg} / \mathrm{hr} \end{aligned}$
Air Fuel Ratio $\mathrm{A} / \mathrm{F}=\frac{137.3[\mathrm{x}+\mathrm{y} / 4-\mathrm{z} / 2]}{\phi[12 \mathrm{x}+\mathrm{y}+16 \mathrm{z}]}$	A/F - mass of air required per unit mass of fuel $\mathrm{x}, \mathrm{y}, \mathrm{z}$ - number of carbon, hydrogen, and oxygen atoms in the fuel molecule ϕ - equivalence ratio
Air Handling Capacity $\mathrm{m}_{\mathrm{a}}=0.03 \mathrm{~V}_{\mathrm{e}} \mathrm{~N}_{\mathrm{e}} \rho_{\mathrm{a}} \eta_{\mathrm{v}}$	m_{a} - air handling capacity, $\mathrm{kg} / \mathrm{hr}$ V_{e} - engine displacement, liters N_{e} - engine speed, rpm ρ_{a} - density of air, $1.19 \mathrm{~kg} / \mathrm{m} 3$ η_{v} - air delviery ratio0.85 for CI, 2.0 turbocharge engine
Engine Air Density $\begin{aligned} & \rho_{\mathrm{a}}=\mathrm{p} / 0.287 \Theta: \text { inlet } \\ & \rho_{\mathrm{ex}}=\mathrm{p} / 0.277 \Theta: \text { exhaust } \end{aligned}$	$\begin{aligned} & \rho_{\mathrm{a}}-\text { density of inlet air, } \mathrm{kg} / \mathrm{m}^{3} \\ & \rho_{\mathrm{ex}}-\text { density of engine exhaust, } \mathrm{kg} / \mathrm{m}^{3} \\ & \mathrm{p} \text { - gas pressure, } \mathrm{kPa} \\ & \Theta \text { - gas temperature, } \mathrm{K} \end{aligned}$

ENGINE FOUNDATION

Weight of Foundation $\mathrm{W}_{\mathrm{f}}=\varepsilon \mathrm{W}_{\mathrm{e}}[\mathrm{~N}]^{0.5}$	W_{f} - weight of foundation, kg $\varepsilon \quad$ - empirical coefficient, 0.11 W_{e} - weight of engine and base frame, kg N - maximum engine speed, rpm
Volume of Foundation $\mathrm{V}_{\mathrm{f}}=\mathrm{W}_{\mathrm{f}} / \rho_{\mathrm{c}}$	V_{f} - volume of foundation, m^{3} W_{f} - weight of foundation, kg ρ_{c}. density of concrete, $2,4006 \mathrm{~kg} / \mathrm{m}^{3}$
Depth of Foundation $\mathrm{D}_{\mathrm{f}}=\mathrm{V}_{\mathrm{f}} /\left[\mathrm{w}_{\mathrm{e}}+\mathrm{L}_{\mathrm{e}}\right]$	D_{f} - depth of foundation, m V_{f} - volume of foundation, m^{3} w_{e} - width of engine plus allowance, $m \mathrm{~L}_{\mathrm{e}}$ - length of engine plus allowance, m
Exerted Soil Pressure at the Foundation $P_{s}=\left[W_{e}+W_{f}\right] / A_{f}$	P_{S} - soil pressure exerted at the based of foundation, $\mathrm{kg} / \mathrm{m}^{2}$ W_{e} - weight of engine, kg W_{f} - weight of foundation, kg A_{f} - area of foundation, kg
Factor of Safety $\mathrm{FS}=\mathrm{BC}_{\mathrm{s}} / \mathrm{P}_{\mathrm{s}}$	FS - factor of safety, dmls BC_{s} - safe soil bearing capacity, $12,225 \mathrm{~kg} / \mathrm{m}^{2}$ P_{s} - soil pressure exerted at the based of foundation, $\mathrm{kg} / \mathrm{m}^{2}$

FLAT AND V-BELT TRANSMISSION

Width of Flat belt $W=\frac{R M}{K P}$	W - width of flat belt, in. R - nameplate horsepower rating of motor, hp K - theoretical belt capacity factor, 1.1 to 19.3 P - pulley correction factor, 0.5 to 0.1
Width of Belt $W=\frac{H \mathrm{H} \mathrm{~S}}{\mathrm{~K} \mathrm{C}}$	W - width of belt, mm H - power transmitted, Watts S - service factor, 1.0 to 2.0 K - power rating of belt, watts $/ \mathrm{mm}$ C $-\operatorname{arc}$ correction factor, 0.69 at 90 deg and 1.00 at 180 deg
Horespower Rating of Belt $H=\frac{W K P}{M}$	H - horsepower rating of belt, hp W - width of belt, in M - motor correction factor, 1.5 to 2.5 P - pulley correction factor, 0.5 to 1.0 K - theoretical belt capacity factor, 1.1 to 19.3

FLAT AND V-BELT TRANSMISSION

$\left.\begin{array}{|l|l|}\hline \text { Speed and Diameter } & \begin{array}{l}N_{r}-\text { speed of driver pulley, rpm } \\ N_{n}-\text { speed of driven pulley, rpm in }\end{array} \\ N_{r} D_{r}=N_{n} D_{n} \\ D_{r}-\text { diameter of driver pulley, inches } \\ D_{n} \text { - diameter of driven pulley, inches }\end{array}\right\}$

FLAT AND V-BELT TRANSMISSION

Length of Belt (Quarter-Turn drive) $\mathrm{L}=1.57\left(\mathrm{D}_{\mathrm{r}}+\mathrm{D}_{\mathrm{n}}\right)+\sqrt{\mathrm{C}^{2}+\mathrm{D}_{\mathrm{r}}^{2}}+\sqrt{\mathrm{C}^{2}+\mathrm{D}_{\mathrm{n}}^{2}}$	L- length of belt, inches C - center distance between pulleys, inches D_{r} - diameter of driver pulley, inches D_{n} - diameter of driven pulley, inches
Belt Speed $\mathrm{V}=0.262 \mathrm{~N}_{\mathrm{p}} \mathrm{D}_{\mathrm{p}}$	V - belt speed, fpm N_{p} - pulley speed, rpm D_{p} - pulley diameter, inches
Speed Ratio $\mathrm{R}_{\mathrm{s}}=\mathrm{N}_{\mathrm{n}} / \mathrm{N}_{\mathrm{r}}$	$\begin{aligned} & \hline R_{s}-\text { speed ratio } \\ & N_{n}-\text { driven pulley, inches } \\ & N_{d}-\text { driver pulley, inches } \end{aligned}$
Arc of Contact $\operatorname{Arc}=180^{\circ}-57.3 \frac{\left(\mathrm{D}_{1}-\mathrm{D}_{\mathrm{s}}\right)}{\mathrm{C}}$	Arc - arc of contact, degrees D_{1} - diameter of larger pulley, inches D_{s} - diameter of smaller pulley, inches C - center distance between pulleys, inches

FLAT AND V-BELT TRANSMISSION

Effective Pull $\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)=\frac{1000 \mathrm{P}}{\mathrm{~V}}$	$\begin{aligned} & \left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)-\text { effective pull, } \mathrm{N} \\ & \mathrm{P}-\text { power, } \mathrm{KW} \\ & \mathrm{~V}-\text { belt speed, } \mathrm{m} / \mathrm{s} \end{aligned}$
Center Distance $\begin{aligned} & C=\frac{b+\sqrt{b^{2}-32\left(D_{1}-D_{s}\right)^{2}}}{16} \\ & b=4 L_{s}-6.28\left(D_{1}+D_{s}\right) \end{aligned}$	C - distance between centers of pulley, mm L_{s} - available belts standard length, mm D_{1} - diameter of larger pulley, mm D_{s} - diameter of small pulley, mm
Length of Arc $\mathrm{L}_{\mathrm{a}}=\frac{\mathrm{DA}}{115}$	L_{a} - length of arc, mm D - diameter of pulley, mm A - angle in degrees subtended by the arc of belt contact on pulley, deg

FLUID MECHANICS

Density, ρ $\rho=\mathrm{m} / \mathrm{v}$	$\begin{aligned} & \mathrm{m} \text { - mass, kg, slug } \\ & \mathrm{v} \text { - volume, } \mathrm{m}^{3}, \mathrm{ft}^{3} \end{aligned}$
Specific volume, v $\mathrm{v}=\mathrm{v} / \mathrm{m}$	$\begin{aligned} & \mathrm{v} \text { - volume, } \mathrm{m}^{3}, \mathrm{ft}^{3} \\ & \mathrm{~m}-\mathrm{mss}, \mathrm{~kg}, \text { slug } \end{aligned}$
$\begin{aligned} & \text { Specific weight, } \gamma, \omega \\ & \qquad \gamma=\omega=\rho g \end{aligned}$	$\begin{array}{\|l\|} \hline \rho-\text { density, } \mathrm{kg} / \mathrm{m}^{3}, \text { slug } / \mathrm{ft}^{3} \\ \mathrm{~g}-\text { gravitational acceleration, }_{\mathrm{ft} / \mathrm{sec}^{2}, \mathrm{~m} / \mathrm{sec}^{2}} \\ \hline \end{array}$
Specific gravity, s $\begin{aligned} & \mathbf{s} \text { subs }= \rho_{\text {subs }} \\ &=\frac{\rho_{\text {std subs }}}{\gamma_{\text {subs }}} \\ & \gamma_{\text {std subs }} \end{aligned}$	$\begin{aligned} & \text { subs - substance } \\ & \text { std subs - standard substance } \end{aligned}$
Vapor Pressure, Pv $\mathrm{Pv} \alpha \mathrm{Ts}$	Pv - vapor pressure Ts - saturation or boiling Temperature
Viscosity $v=\mu / \rho$	$\begin{aligned} & \mathrm{v} \text { - kinematic viscosity, } \mathrm{m}^{2} / \mathrm{sec} \\ & \mu \text { - absolute viscosity, Pasec } \\ & \rho \text { - density, } \mathrm{kg} / \mathrm{m}^{3} \end{aligned}$
Ideal Gas Equation of State: $\mathrm{Pv}=\mathrm{mRT}$	P - absolute pressure, kPaa v - total or absolute volume, m^{3} R - gas constant, $8.3143 \mathrm{~kJ} / \mathrm{M}$ $\mathrm{kg} \mathrm{K}, 1545.32 \mathrm{ft} \mathrm{lb} / \mathrm{M} \mathrm{lb}^{\circ} \mathrm{R}$ M - molecular weight of gas T - absolute temperature, K
Gas constant and specific heat $\begin{aligned} & \mathrm{R}=\mathrm{Cp}-\mathrm{Cv} \\ & \mathrm{k}=\mathrm{Cp} / \mathrm{Cv}>1.0 \end{aligned}$	Cp - specific heat at constant pressure Cv - specific heat at constant volume R - gas constant k - specific heat ratio
$\begin{aligned} & \text { Gay - Lussac's Law } \\ & \left.\qquad \frac{\mathrm{Pv}}{\mathrm{mT}}\right]_{1}=\left[\frac{\mathrm{Pv}}{\mathrm{mT}}\right]_{2} \\ & \mathrm{~m}_{1} \neq \mathrm{m}_{2} \\ & \frac{\mathrm{P}_{1} \mathrm{v}_{1}}{\mathrm{~m}_{1} \mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{v}_{2}}{\mathrm{~m}_{2} \mathrm{~T}_{2}} \\ & \mathrm{~m}_{1}=\mathrm{m}_{2} \frac{\mathrm{P}_{1 \mathrm{v}_{1}}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2 \mathrm{v}_{2}}}{\mathrm{~T}_{2}} \end{aligned}$	P_{1} - initial absolute pressure, $\mathrm{kPaa}, \mathrm{psia}$ P_{2} - final absolute pressure, kPaa, psia T_{1} - initial absolute temperature, $\mathrm{K},{ }^{\circ} \mathrm{R}$ T_{2} - final absolute temperature, $\mathrm{K},{ }^{\circ} \mathrm{R}$ $\mathrm{v}_{1}-$ absolute initial volume, $\mathrm{m}^{3}, \mathrm{ft}^{3}$ v_{2} - absolute final volume, $\mathrm{m}^{3}, \mathrm{ft}^{3}$ m_{1} - initial mass, kg , lb m_{2} - final mass, kg, lb

FLUID MECHANICS

FLUID MECHANICS

Bulk Modulus of Elasticity $\mathrm{E}_{\mathrm{V}}=\frac{-v_{1} \mathrm{dP}}{\mathrm{dv}}$	E_{v} - bulk modulus of elasticity or volume modulus of elasticity v_{1} - initial specific volume v_{2} - final specific volume dP - change in pressure dv - change in volume
Pressure Measurements $P_{a b s}=P_{g}+P_{b}$	$\mathrm{P}_{\mathrm{abs}}$ - absolute pressure P_{g} - vacuum pressure gage or tensile pressure P_{b} - pressure of atmospheric air measured by the use of barometer
sForces on Plane Areas $\begin{aligned} & \mathrm{F}=\gamma \mathrm{h}_{\mathrm{c}} \mathrm{~A} \\ & \mathrm{~h}_{\mathrm{p}}=\mathrm{h}_{\mathrm{c}}+\mathrm{e} \\ & \mathrm{e}=\frac{\mathrm{I}_{\mathrm{NA}}}{\mathrm{~h}_{\mathrm{c}} \mathrm{~A}} \end{aligned}$	F - volume of pressure diagram h_{c} - vertical height from fluid surface to neutral axis, m A - plane area, m^{2} h_{p} - vertical height from vertical point of application of F to fluid surface, m e - eccentricity, m I_{NA} - centroidal moment of inertia
Common I_{NA}	
Rectangle $\mathrm{I}_{\mathrm{NA}}=\frac{\mathrm{BH}^{3}}{12}$	B - base of the rectangle H - height of the rectangle
Triangle $\mathrm{I}_{\mathrm{NA}}=\frac{\mathrm{BH}^{3}}{36}$	B - base of the triangle H - height of the triangle
Circle $\mathrm{I}_{\mathrm{NA}}=\frac{\pi \mathrm{D}^{4}}{64}=\frac{\pi \mathrm{R}^{4}}{4}$	$\begin{aligned} & \mathrm{D} \text { - diameter } \\ & \mathrm{R} \text { - radius } \end{aligned}$

FLUID MECHANICS

Semi-circle $\mathrm{I}_{\mathrm{NA}}=0.1098 \mathrm{R}^{4}$ Ellipse $\mathrm{I}_{\mathrm{NA}}=\frac{\pi}{4} \mathrm{ab}^{3}$ a $\mathrm{I}_{\mathrm{NA}}=\frac{\pi}{4} \quad \mathrm{ba}^{3}$	R - radius a - horizontal distance from neutral axis to end of ellipse b - vertical distance from neutral axis to the end of ellipse a - vertical distance from the neutral axis to the end of ellipse b - horizontal distance from the neutral axis to the end of ellipse
Archimedes Law	BF - buoyant force V - volume displaced

FLUID MECHANICS

Vertical Motions of Liquids For upward motion: $\mathrm{P}_{\mathrm{B}}=\gamma \mathrm{h}(1+\mathrm{a} / \mathrm{g})$ For downward motion: $\mathrm{P}_{\mathrm{B}}=\gamma \mathrm{h}(\mathrm{a}-\mathrm{a} / \mathrm{g})$	$\begin{aligned} & \text { a }- \text { vertical acceleration } \\ & \mathrm{g}-9.81 \mathrm{~m} / \mathrm{s}^{2} \\ & -32.2 \mathrm{ft} / \mathrm{s}^{2} \\ & \mathrm{~h}-\text { height of fluid } \\ & \gamma-\text { specific weight of fluid } \\ & \mathrm{P}_{\mathrm{B}} \text { - pressure exerted by fluid at tank's bottom } \end{aligned}$
For horizontal motion of liquids $\tan \theta=\mathrm{a} / \mathrm{g}$	θ - angle of inclination of fluids surface where subjected to horizontal motion a - acceleration $\mathrm{g}-9.81 \mathrm{~m} / \mathrm{s}^{2}, 32.2 \mathrm{~m} / \mathrm{s}^{2}$
Inclined plane motion	$\begin{aligned} & \text { ax }-a \cos \beta \\ & a y-a \sin \beta \end{aligned}$
Upward motion: $\tan \theta=\frac{\mathrm{ax}}{\mathrm{~g}+\mathrm{ay}}$	
Downward motion: $\tan \theta=\frac{\mathrm{ax}}{\mathrm{~g}-\mathrm{ay}}$	

FURROW IRRIGATION

Size of Stream	Q_{s} - maximum non-erosive furrow stream, gpm S - slope of land, \%
$\mathrm{Q}_{\mathrm{s}}=10 / \mathrm{S}$	
Safe Length of Furrow	L_{s} - safe length of furrow, ft I - rainfall intensity, iph $\mathrm{L}_{\mathrm{s}}=1000 /[(\mathrm{I}-\mathrm{F})$ W S] W - infiltration rate of soil, iph S - slope of furrow, \%

GAS CLEANING

Minimum Particle Size Diameter for Horizontal Settling Chamber (Particles smaller than 200 micron) $\mathrm{d}_{\min }=\sqrt{\frac{18 \mathrm{HV} \mathrm{H}}{\rho_{\mathrm{p}} \mathrm{~g} \mathrm{~L}}}$	$\mathrm{d}_{\text {min }}$ - particle size that can be retained, m H - height of chamber, m V - gas velocity, m / s μ - viscosity, $220 \times 10-7 \mathrm{~kg} / \mathrm{m}$-s for producer gas ρ_{p} - particle density, $1000-1500 \mathrm{~kg} / \mathrm{m}^{3}$ g - gravitational acceleration, $9.81 \mathrm{~m} / \mathrm{sec}^{2}$ L - length of chamber, m
Diameter of Particles too be Collected from Cyclone Separator at 50\% Collection Efficiency $\mathrm{d}_{50}=58.4[0.2 \mathrm{D} / \mathrm{V}]$	```D D0 - diameters of particles collected with 50% efficiency, micron D - cyclone separator diameter, m V - inlet gas velocity, m/s```

GASIFIER

Heat Energy Demand to Replace Fuel For Diesel $\mathrm{Qd}=\mathrm{Vfr} \times 0.845 \times 10917$ For kerosene $\mathrm{Qd}=\operatorname{Vfr} \times 0.7923 \times 11,000$ For LPG $\mathrm{Qd}=\mathrm{Mfr} \times 11767$	Qd = heat energy demand, $\mathrm{kcal} / \mathrm{hr}$ Vfr - mass flow rate, liters/hr Mfr - mass flow rate, $\mathrm{kg} / \mathrm{hr}$ HVF - heating value of fuel
Weight of Fuel $\mathrm{FCR}=\mathrm{Q}_{\mathrm{a}} /\left[\xi_{\mathrm{g}} \mathrm{HVf}\right]$	FCR - weight of fuel, $\mathrm{kg} / \mathrm{hr}$ Q_{a} - actual heat required, $\mathrm{kCal} / \mathrm{hr}$ ξ_{g} - efficiency of gasifier, decimal HVf - heating value of fuel, $\mathrm{kCal} / \mathrm{kg}$
Air Required for Gasification $\mathrm{AFR}=\mathrm{FCR} \mathrm{SA} \mathrm{e}$	AFR - air flow rate, $\mathrm{kg} / \mathrm{hr}$ FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ SA - stoichiometric air, kg air/kg fuel e - equivalence ratio, 0.3 to 0.4
Inner Reactor Diameter (Double Core Down DraftType) $\mathrm{D}_{\mathrm{i}}=[1.27 \mathrm{FCR} / \mathrm{SGR}]^{0.5}$	D_{i} - reactor diameter, m FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ SGR - specific gasification rate, kg fuel $/ \mathrm{m}^{2}-\mathrm{hr}$
Outer Reactor Diameter (Double Core Down Draft Type) $\mathrm{D}_{\mathrm{o}}=1.414 \mathrm{D}_{\mathrm{i}}$	D_{0} - outer core diameter of reactor, m D_{i} - inner core diameter of reactor, m

GASIFIER

Height of Reactor for Batch Type Gasifier $\mathrm{H}_{\mathrm{r}}=\mathrm{FZR} \mathrm{~T}_{\mathrm{o}}$	H_{r} - reactor height, m FZR - fire zone rate, m / hr T_{o} - operating time
Static Pressure Requirement $\mathrm{P}_{\mathrm{s}}=\mathrm{H}_{\mathrm{r}} \delta_{\mathrm{s}}$	P_{s} - static pressure requirement in fuel bed, $\mathrm{cm} \mathrm{H}_{2} \mathrm{O}$ H_{r} - reactor height, m δ_{s} - specific draft, $\mathrm{cm}_{\mathrm{H}_{2} \mathrm{O} / \mathrm{m} \text { depth of fuel }}$
Char Discharge Rate $\mathrm{Q}_{\mathrm{c}}=\mathrm{FCR} \zeta_{\mathrm{c}}$	Q_{c} - char discharge rate, $\mathrm{kg} / \mathrm{hr}$ FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ ζ_{c} - percentage char produced, decimal
Power Output $\mathrm{Po}=0.0012 \times \mathrm{FCR} \times \xi \mathrm{g} / \mathrm{HVF}$	Po - power output, kw FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ $\xi \mathrm{g}$ - gasifier efficiency, \% HVF - heating value of fuel, $\mathrm{kcal} / \mathrm{kg}$
Power Output Rice Husk Gasifier based on Gas Produced $P o=V \operatorname{fr} \times 1400$	Po - power output, kcal/hr Vfr - volumetric flow rate of gas produced, $\mathrm{m} 3 / \mathrm{hr}$
Efficiency of Rice Husk Gasifier $\xi \mathrm{g}=\mathbf{P o} 100 /(\mathbf{M f r x 3 0 0 0})$	$\xi \mathrm{g}$ - gasifier efficiency, \% Vfr - volumetric flow rate of gas, m3/hr Mfr - mass flow rate of fuel, $\mathrm{kg} / \mathrm{hr}$

GEARS

Gear Ratio $\mathrm{GR}=\mathrm{T}_{\mathrm{n}} / \mathrm{T}_{\mathrm{r}}$	$\begin{aligned} & \text { GR - gear ratio } \\ & T_{n} \text { - number of teeth of driven gear } \\ & T_{r} \text { - number of teeth of driver gear } \end{aligned}$
Design Power (Helical and Spur Gears) $\mathrm{P}_{\mathrm{d}}=\mathrm{P}_{\mathrm{t}}\left(\mathrm{SF}_{\mathrm{lo}}+\mathrm{SF}_{\mathrm{lu}}\right)$	Pd - design power, kW Pt - power to be transmitted, kw SF_{10} - service factor for the type of load, 1.0-1.8 $\mathrm{SF}_{\mathrm{lu}}$ - service factor for type of lubrication, 0.1-0.7
Center Distance $\mathrm{CD}=\frac{\mathrm{M}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)}{2}$	CD - center distance M - module t_{1} - number of teeth of the driven gear t_{2} - number of teeth of the driver gear
Design Power (Straight Bevel Gear) $P_{\mathrm{d}}=\mathrm{P}_{\mathrm{t}} \mathrm{SF} / \mathrm{LDF}$	P_{d} - design power, KW P_{t} - power to be transmitted, KW SF - service factor, 1 to 2.5 LDF - load distribution factor, 1.0 to 1.4
Driver Gear Pitch Angle (Straight Bevel Gear) $\gamma=\tan ^{-1} \mathrm{t}_{1} / \mathrm{t}_{2}$	$\gamma-$ pitch angle for the driver gear, deg t_{1} - number of teeth of the driver gear t_{2} - number of teeth of the driven gear
Driven Gear Pitch Angle (Straight Bevel) $\Gamma=90^{\circ}-\gamma$	Γ - pitch angle for the driven gear, deg γ - pitch angle for the driver gear, deg

GRAIN DRYER

Drying Capacity $\mathrm{C}_{\mathrm{d}}=\left(\mathrm{W}_{\mathrm{i}} / \mathrm{T}_{\mathrm{d}}\right)$	$\begin{aligned} & \mathrm{C}_{\mathrm{d}}-\text { drying capacity, } \mathrm{kg} / \mathrm{hr} \\ & \mathrm{~W}_{\mathrm{i}}-\text { initial weight of material, } \mathrm{kg} \\ & \mathrm{~T}_{\mathrm{d}}-\text { drying time, } \mathrm{hr} \end{aligned}$
Final Weight of Dried Material $\mathrm{W}_{\mathrm{f}}=\frac{\mathrm{W}_{\mathrm{i}}\left(100-\mathrm{M}_{\mathrm{ci}}\right)}{\left(100-\mathrm{MC}_{\mathrm{f}}\right)}$	W_{f} - final weight of dried material, kg W_{i} - initial weight of material, kg M_{ci} - initial moisture content, $\%$ MC_{f} - final moisture content, $\%$
Moisture Reduction per Hour $\mathrm{MRR}=\frac{\mathrm{W}_{\mathrm{i}}-\mathrm{W}_{\mathrm{f}}}{\mathrm{~T}_{\mathrm{d}}}$	MRR - moisture reduction rate, $\mathrm{kg} / \mathrm{hr}$ W_{i} - initial weight, kg W_{f} - final weight, kg T_{d} - drying time, hr
Heat Supplied to the Dryer $\mathrm{Q}_{\mathrm{sd}}=\frac{60\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right) \mathrm{AR}}{\gamma}$	$\mathrm{Q}_{\text {sd }}$ - heat supplied to the dryer, $\mathrm{KJ} / \mathrm{hr}$ H_{2} - enthalpy of drying air, $\mathrm{KJ} / \mathrm{kg}$ da H_{1} - enthalpy of ambient air, $\mathrm{KJ} / \mathrm{kg}$ da AR - airflow rate, $\mathrm{m}^{3} / \mathrm{min}$ γ - specific volume, $\mathrm{m}^{3} / \mathrm{kg}$ da
Heat Available in the Fuel $\mathrm{Q}_{\mathrm{af}}=\mathrm{FCR} \mathrm{HV}_{\mathrm{f}}$	Q_{af} - heat available in the fuel, $\mathrm{KJ} / \mathrm{hr}$ FCR - fuel consumption rate, $\mathrm{kg} / \mathrm{hr}$ HV_{f} - heating value of fuel, $\mathrm{KJ} / \mathrm{hr}$

GRAIN DRYER

Heat System Efficiency $\xi_{\mathrm{hs}}=\left(\mathrm{Q}_{\mathrm{sd}} / \mathrm{Q}_{\mathrm{af}}\right) 100$	$\xi_{\text {hs }}-$ heating system efficiency, \% $\mathrm{Q}_{\text {sd }}$ - heat supplied to the dryer, $\mathrm{KJ} / \mathrm{hr}$ Q_{af} - heat available in the fuel, $\mathrm{KJ} / \mathrm{hr}$
Heat Utilization $\mathrm{HU}=\left(\mathrm{Q}_{\mathrm{sd}} \times \mathrm{T}_{\mathrm{d}} / \mathrm{MR}\right) 100$	HU - heat utilization, KJ/kg $\mathrm{Q}_{\text {sd }}$ - heat supplied to the dryer, $\mathrm{KJ} / \mathrm{hr}$ T_{d} - drying time, hr MR - amount of moisture removed, kg
Heat Utilization Efficiency $\xi_{\mathrm{hu}}=\frac{\mathrm{THU}}{\mathrm{Q}_{\mathrm{sd}}} \times 100$	$\xi_{\text {hu }}$ - heat utilization efficiency, \% THU - total heat utilized, $\mathrm{KJ} / \mathrm{hr}$ $\mathrm{Q}_{\text {sd }}$ - heat supplied to the dryer, $\mathrm{KJ} / \mathrm{hr}$
Volume of Grain to be Dried $\mathrm{V}_{\mathrm{g}}=1000 \mathrm{~W}_{\mathrm{i}} / \mathrm{D}_{\mathrm{g}}$	V_{g} - volume of grain to be dried, m^{3} W_{i} - initial weight of grain, tons D_{g} - grain density, $\mathrm{kg} / \mathrm{m}^{3}$
Drying Floor Area $A_{f}=V_{g} / D_{g}$	A_{f} - floor area of bin, m^{2} V_{g} - volume of grain in bin, m^{3} D_{g} - depth of grain in bin, m

GRAIN DRYER

Airflow Requirement $\mathrm{A}_{\mathrm{f}}=\mathrm{C} \mathrm{SAF}$	A_{f} - air flow rate, $\mathrm{m}^{3} / \mathrm{min}$ C - dryer capacity, tons SAF - specific air flow rate, $\mathrm{m}^{3} / \mathrm{min}$-ton
Apparent Air Velocity in Grain Bed $\mathrm{V}_{\text {app }}=\mathrm{AF} / \mathrm{A}_{\mathrm{f}}$	$\mathrm{V}_{\text {app }}$ - apparent air velocity, $\mathrm{m} / \mathrm{min}$ AF - total airflow, $\mathrm{m}^{3} / \mathrm{min}$ A_{f} - dryer floor area, m^{2}
Blower Pressure Draft Requirement $P_{d}=P_{s} D_{g}$	P_{d} - blower pressure draft, cm of water P_{s} - specific pressure draft, cm water per meter depth of grain D_{g} - depth of grain in bed, m
Theoretical Heat Required $\mathrm{Q}_{\mathrm{r}}=\frac{\mathrm{H}_{\mathrm{n}} \mathrm{AF}}{\mathrm{~V}_{\mathrm{s}}}$	Q_{r} - theoretical heat required, $\mathrm{KJ} / \mathrm{min}$ H_{n} - net enthalpy, $\mathrm{KJ} / \mathrm{kg}$ V_{s} - specific volume of air, $\mathrm{m}^{3} / \mathrm{kg}$
Theoretical Weight of Fuel $\mathrm{WF}=\mathrm{Q}_{\mathrm{r}} / \mathrm{HVF}$	WF - theoretical weight of fuel, $\mathrm{kg} / \mathrm{min}$ Q_{r} - total heat required, $\mathrm{KJ} / \mathrm{min}$ HVF - heating value of fuel, $\mathrm{KJ} / \mathrm{kg}$

GRAIN DRYER

Theoretical Volume of Fuel $V_{f}=W F / D_{f}$	W_{f} - theoretical volume of fuel, lpm WF - total weight of fuel, $\mathrm{kg} / \mathrm{min}$ D_{f} - density of fuel, $\mathrm{kg} /$ liter
Actual Volume of Fuel $\mathrm{FV}_{\mathrm{a}}=\mathrm{V}_{\mathrm{f}} / \xi_{\mathrm{t}}$	FV_{a} - actual volume of fuel, lph V_{f} - theoretical volume of fuel, lph ξ_{t}-thermal efficiency, decimal
Weight of Moisture Removed $\mathrm{WMR}=\mathrm{W}_{\mathrm{i}}\left(1-\frac{1-\mathrm{Mc}_{\mathrm{i}}}{1-\mathrm{MC}_{\mathrm{f}}}\right)$	WMR - weight of moisture removed, kg $\mathrm{W}_{\mathrm{i}}-$ initial weight of grain to be dried, kg MC_{i} - initial moisture content, decimal MC_{f} - final moisture content, decimal
Drying Time $\mathrm{DT}=\frac{\mathrm{WMR}}{\mathrm{AF} \mathrm{~V}_{\mathrm{s}} \mathrm{HR}}$	DT - drying time, min WMR - weight of moisture to be removed, kg AF - airflow rate $\mathrm{mg} / \mathrm{min}$ V_{s} - air density, $\mathrm{kg} / \mathrm{m}^{3}$ HR - humidity ratio, kg moisture/kg da

GRAIN ENGINEERING PROPERTIES

Paddy Porosity $\begin{aligned} & \mathrm{P}_{\mathrm{m}}=69.05-0.885 \mathrm{M} \\ & \mathrm{P}_{1}=65.55-0.475 \mathrm{M} \end{aligned}$	P_{m} - porosity for medium paddy, $\%$ P_{1} - porosity for long paddy, $\% \mathrm{t}$ M - moisture content wet basis, \%
Thermal Conductivity of Paddy Grains $\mathrm{K}=0.0500135+0.000767 \mathrm{M}$	K - thermal conductivity, $\mathrm{BTU} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$ M - moisture content, \% wet basis
Specific Heat of Paddy $\mathrm{C}=0.22008+0.01301 \mathrm{M}$	C - specific heat, $\mathrm{BTU} / \mathrm{lb}-{ }^{\circ} \mathrm{F}$ M - moisture content, $\%$ wet basis
Length of Paddy (Short Grain) $\mathbf{1 1 . 2 1 \%}<\mathbf{M}<\mathbf{2 1 . 8 9 \%}$ $\mathrm{L}=0.7318+0.00122 \mathrm{M}$	L - length of paddy, cm M - moisutre content of paddy, \%
Width of Paddy (Short Grain) $\mathbf{1 1 . 2 1 \%}<$ M $<\mathbf{2 1 . 8 9 \%}$ $\mathrm{W}=0.3358+0.00089 \mathrm{M}$	W - width of paddy, cm M - moisutre content of paddy, \%
Thickness of Paddy (Short Grain) $\mathbf{1 0 . 4 0 \%}$ < $<\mathbf{M}<2.59 \%$ $\mathrm{T}=0.2187+0.000089 \mathrm{M}$	T - thickness of paddy, cm M - moisutre content of paddy, \%

GRAIN ENGINEERING PROPERTIES

Coefficient of Thermal Expansion of Milled Rice (For Temp Below $53{ }^{\circ} \mathrm{C}$) $\mathrm{C}_{\mathrm{k}}=0.0002403 \operatorname{per} \mathrm{C}$	C_{k} - coefficient of thermal expansion at storage moisture over a temperature of $30-70^{\circ} \mathrm{C}$
Coefficient of Thermal Expansion of Milled Rice (For Temp Equal and Above $53{ }^{\circ} \mathrm{C}$) $\mathrm{C}_{\mathrm{k}}=0.0003364 \text { per } \mathrm{C}$	C_{k} - coefficient of thermal expansion at storage moisture over a temperature of $30-70{ }^{\circ} \mathrm{C}$
Latent Heat of Vaporization of Paddy $\begin{aligned} \mathrm{HV}= & 2.32[1094-1.026 \mathrm{x} \\ & (\mathrm{T}+17.78)] \mathrm{x} \\ & {[1+2 . .4962 \operatorname{Exp}(-21.73 \mathrm{M})] } \end{aligned}$	HV - latent heat of vaporization, $\mathrm{KJ} / \mathrm{kg}$ T - air temperature, ${ }^{\circ} \mathrm{C}$ M - moisture content, decimal dry basis
Equilibrium Moisture Content $\mathrm{M}_{\mathrm{d}}=\mathrm{E}-\mathrm{F} \ln [-\mathrm{R}(\mathrm{~T}+\mathrm{C}) \ln \mathrm{RH}]$	Md - moisture content, decimal dry basis E - constant, 0.0183212 to 0.480920 F - constant, 0.026383 to 0.066826 R - universal gas constant, 1.987 T - temperature, ${ }^{\circ} \mathrm{C}$ C - constant, 12.354 to 120.098 RH - relative humidity, decimal

GRAIN ENGINEERING PROPERTIES

Mass Transfer Coefficient of Paddy $\begin{aligned} \mathrm{K}_{\mathrm{g}}= & 0.008489-0.000225 \mathrm{~T} \\ & +0.000236 \mathrm{RH}-0.00042 \mathrm{Q} \end{aligned}$	K_{g} - mass transfer coefficient, moisture decimal drybasi- $\mathrm{cm}^{2} / \mathrm{h}-\mathrm{m}^{2}-\mathrm{kg}$ T - temperature of drying air, ${ }^{\circ} \mathrm{C}$ RH - relative humidity, \% Q - airflow rate of drying air, $\mathrm{m}^{3} / \mathrm{min}$
Equilibrium Moisture Content $\mathrm{M}_{\mathrm{d}}=\mathrm{E}-\mathrm{F} \ln [-\mathrm{R}(\mathrm{~T}+\mathrm{C}) \ln \mathrm{RH}]$	Md - moisture content, decimal dry basis E - constant, 0.0183212 to 0.480920 F - constant, 0.026383 to 0.066826 R - universal gas constant, 1.987 T - temperature, ${ }^{\circ} \mathrm{C}$ C - constant, 12.354 to 120.098 RH - relative humidity, decimal
Mass Transfer Coefficient of Paddy $\begin{aligned} \mathrm{K}_{\mathrm{g}}= & 0.008489-0.000225 \mathrm{~T} \\ & +0.000236 \mathrm{RH}-0.00042 \mathrm{Q} \end{aligned}$	K_{g} - mass transfer coefficient, moisture decimal drybasi- $\mathrm{cm}^{2} / \mathrm{h}-\mathrm{m}^{2}-\mathrm{kg}$ T - temperature of drying air, ${ }^{\circ} \mathrm{C}$ RH - relative humidity, \% Q - airflow rate of drying air, $\mathrm{m}^{3} / \mathrm{min}$

GRAIN SEEDER

Nominal Working Width $\mathrm{W}=\mathrm{n} \mathrm{~d}$	W - working width, m n - number of rows d - row spacing, m
Effective Diameter of Ground Wheel $\mathrm{D}_{\mathrm{e}}=\frac{\mathrm{d}}{\pi \mathrm{~N}}$	D_{e} - effective diameter of ground wheel under load, m d - distance for a given N, m N - number of revolution, rpm
Delivery Rate $\mathrm{Q}=\frac{\mathrm{L} 10,000}{\pi \mathrm{D}_{\mathrm{e}} \mathrm{~N} \mathrm{~W}^{2}}$	Q - delivery rate, kg/ha L - delivery for a given N, kg D_{e} - effective diameter of ground wheel under load, m N - number of revolution, rpm W - working with, m
Delivery Rate (PTO-Driven Machine) $\mathrm{Q}=\frac{\mathrm{L} 10,000}{\mathrm{v} \mathrm{t} \mathrm{~W}}$	Q - delivery rate, kg/ha L - delivery for a given N, kg v - tractor speed, m / s t - time for measuring delivery, s W - working with, m
Effective Field Capacity $\mathrm{e}_{\mathrm{fc}}=\mathrm{A} / \mathrm{t}$	$\mathrm{e}_{\mathrm{fc}}-$ effective field capacity, $\mathrm{m}^{2} / \mathrm{h}$ A - area covered, m^{2} t - time used during operation, hr

GRAIN SEEDER

Theoretical Field Capacity $\mathrm{t}_{\mathrm{fc}}=0.36 \mathrm{w} \mathrm{v}$	$\mathrm{t}_{\mathrm{fc}}-$ theoretical field capacity, $\mathrm{m}^{2} / \mathrm{hr}$ w - working width, m v - speed of operation, m/s
Field Efficiency $\mathrm{F}_{\mathrm{e}}=\left(\mathrm{e}_{\mathrm{fc}} / \mathrm{t}_{\mathrm{fc}}\right) \quad 100$	$\begin{aligned} & \mathrm{F}_{\mathrm{e}}-\text { field efficiency, } \% \\ & \mathrm{e}_{\mathrm{fc}}-\text { effective field capacity, } \mathrm{m}^{2} / \mathrm{hr} \\ & \mathrm{t}_{\mathrm{fc}} \text { - theoretical field capacity, } \mathrm{m}^{2} / \mathrm{hr} \end{aligned}$
Fuel Consumption Rate $\mathrm{FC}=\mathrm{V} / \mathrm{t}$	$\begin{aligned} & \text { FC - fuel consumption, lph } \\ & \text { V - volume of fuel consumed, } \\ & \text { t - total operating time, hr } \end{aligned}$
No. of Hills Planted $\mathrm{H}_{\mathrm{n}}=\frac{\text { A } 10,000}{\mathrm{~S}_{\mathrm{r}} \mathrm{~S}_{\mathrm{h}}}$	H_{n} - number of hills A - area planted, hectares S_{r} - row spacing, m S_{h} - hill spacing, m
Wheel Slip $W_{s}=\frac{N_{o}-N_{1}}{N_{o}} \times 100$	W_{s} - wheel slip, \% N_{o} - sum of the revolutions of the driving wheel without load, rev N_{1} - sum of the revolutions of all driving wheel with load, rev
Distance per Hill $\mathrm{D}_{\mathrm{ph}}=\mathrm{S}_{\mathrm{r}} \pi \mathrm{D}_{\mathrm{g}} / \mathrm{Nc}$	D_{ph} - distance per hill, mm S_{r} - speed ratio of ground wheel and seed plate D_{g} - diameter of the ground wheel, mm N_{c} - number of cells in the seed plate

GRAIN SEEDER

Speed Ratio of Ground Wheel and Metering Device $\mathrm{R}=\frac{\mathrm{N}_{\mathrm{c}} \mathrm{H}_{\mathrm{s}}}{\mathrm{C}_{\mathrm{gw}}}$	R - speed ratio N_{c} - number of cells H_{s} - hill spacing, m C_{gw} - circumference of ground wheel, m
Total Weight of Seeds $\mathrm{TW}_{\mathrm{s}}=\frac{\mathrm{N}_{\mathrm{h}} \mathrm{~N}_{\mathrm{sh}} \mathrm{~S}_{\mathrm{w}}}{1000 \mathrm{E}}$	TW_{s} - total weight of seeds needed, kg N_{h} - number of hills N_{sh} - number of seeds per hill S_{w} - specific weight of seeds, $g /$ seeds E - emergence, decimal

GRAIN STORAGE LOSS

Loss Due to Respiration (Medium Grain) $\begin{aligned} \mathrm{L}_{\mathrm{res}}= & W_{\mathrm{p}} \times D M L \\ \mathrm{DML}= & 1-\exp \left[\left[-\mathrm{At}^{\mathrm{C}} \exp [\mathrm{D}(\mathrm{~T}-60)]\right.\right. \\ & \operatorname{Exp}[\mathrm{E}(\mathrm{~W}-0.14)]] \end{aligned}$	$\mathrm{L}_{\text {res }}$ - weight loss due to respiration, kg W_{g} - weight of grain stored, kg DML - dry mater loss, decimal t - storage time, $\mathrm{hr} / 1000$ T - temperature, ${ }^{\circ} \mathrm{F}$ W - moisture content, decimal wb A - constant, 0.000914 C - constant, 0.6540 D - constant, 0.03756 E-constant, 33.61
Loss Due to Microorganism $\mathrm{Lm}=\left(\frac{\mathrm{W}_{\mathrm{i}}\left(100-\mathrm{M}_{\mathrm{i}}\right)}{100}+0.68 \times 10^{0.44 \mathrm{Mi}-11.08}\right) \mathrm{D}$	L_{m} - weight loss due to microorganism, kg W_{i} - weight of incoming stock, tons M_{i} - moisture content of incoming stock, \% w.b. D - storage period, days
Loss Due to Insect $\mathrm{L}_{\mathrm{i}}=0.003 \mathrm{I}_{\mathrm{d}}$	L_{i} - weight loss due to insects, kg I_{d} - percent insect damaged kernels at the end of the storage period, $\%$

GRAIN STORAGE LOSS

Loss Due to Rodents $\mathrm{L}_{\mathrm{r}}=\mathrm{CD}$	L_{r} - weight loss due to rodents, kg C - coefficient, $0.0036,0.020,0.035 \mathrm{~kg} /$ day for mice, small rats, and big rats respectively D - storage period, days
Loss Due to Birds $\mathrm{L}_{\mathrm{b}}=0.005 \mathrm{D} \mathrm{P}$	L_{b} - weight loss due to birds, kg D - storage period, days P - bird population
Loss Due to Spillage $\mathrm{L}_{\mathrm{s}}=0.005 \mathrm{~W}_{\mathrm{g}} \mathrm{H}_{\mathrm{f}}$	L_{s} - weight loss due to spillage, kg W_{g} - weight of grain handled, kg $\mathrm{H}_{\mathrm{f}}-$ number of times of handling
Total Weight Loss $\mathrm{L}_{\mathrm{t}}=\mathrm{L}_{\mathrm{r}}+\mathrm{L}_{\mathrm{m}}+\mathrm{L}_{\mathrm{i}}+\mathrm{L}_{\mathrm{r}}+\mathrm{L}_{\mathrm{b}}+\mathrm{L}_{\mathrm{s}}$	L_{t} - total weight loss, kg L_{r} - weight loss due to respiration, kg L_{m} - weight loss due to microorganism, kg L_{i} - weight loss due to insect, kg L_{r} - weight loss due to rodents, kg L_{b} - weight loss due to birds, kg L_{s} - weight loss due to spillage, kg

GRAIN STORAGE STRUCTURE

Volumetric Capacity of Cylindrical Grain Bins (Level Full Volume) $\mathrm{V}=\frac{\pi \mathrm{D}^{2}}{-------\mathrm{EH}} 4$	V - bin capacity, m^{3} D - bind diameter, m EH - eave height of bin, m
Volumetric Capacity of Cylindrical Grain Bins (Peaked Storage Capacity) $\mathrm{V}=\left(\frac{\pi \mathrm{D}^{2}}{4}\right) \mathrm{EH}+\left(\frac{\pi \mathrm{D}^{2}}{4}\right)\left(\frac{\mathrm{D} / 2) \tan \phi}{3}\right)$	```V - bin capacity, \(\mathrm{m}^{3}\) D - bind diameter, m EH - eave height of bin, \(m\) \(\phi\) - maximum angle of fill, deg```
Volumetric Capacity of Cylindrical Grain Bins (Hopper Bottom Bin) $\begin{aligned} V & =\left(\frac{\pi \mathrm{D}^{2}}{4}\right) \mathrm{EH}+\left(\frac{\pi \mathrm{D}^{2}}{4}\right)\left(\frac{(\mathrm{D} / 2) \tan \phi}{3}\right) \\ & +\left(\frac{\pi \mathrm{D}^{2}}{4}\right)\left(\frac{(\mathrm{D} / 2) \tan \delta}{3}\right) \end{aligned}$	V - bin capacity, m^{3} D - bind diameter, m EH - eave height of bin, m ϕ - maximum angle of fill, deg δ - slope of the hopper measured in deg from horizontal

GRAIN STORAGE STRUCTURE

Airflow Resistance $\Delta \mathrm{P}=\frac{\mathrm{a} \mathrm{Q}^{2}}{\log _{\mathrm{e}}(1+\mathrm{bQ})} \mathrm{L}$	$\Delta \mathrm{P}$ - airflow resistance, Pa L - bed depth, m a - constant, 2.57×10^{4} for rice; 2.104 for shelled corn Q - airflow, $\mathrm{m}^{3} / \mathrm{s}-\mathrm{m}^{2}$ B - constant, 13.2 for rice and 30.4 for shelled corn
Flow of Grain through Horizontal Orifice $\mathrm{Q}_{\mathrm{h}}=0.028 \mathrm{~A} \mathrm{D}^{0.62}(\operatorname{corn} 12-15 \% \mathrm{wb})$	$\begin{aligned} & \mathrm{Q}_{\mathrm{h}} \text { - volume flow, } \mathrm{m}^{3} / \mathrm{hr} \\ & \mathrm{~A} \text { - area of the orifice, } \mathrm{cm}^{2} \\ & \mathrm{D} \text { - hydraulic diameter, } \mathrm{cm} \end{aligned}$
Flow of Grain through Vertical Orifice $\begin{aligned} & \mathrm{Q}_{\mathrm{h}}=0.016 \mathrm{~A} \mathrm{D} \\ & \mathrm{Q}_{\mathrm{h}}=0.024 \mathrm{~A} \mathrm{D}^{0.79}(\text { corn } 13-165 \% \mathrm{wb}) \\ & \mathrm{Q}_{\mathrm{h}}=0.018 \mathrm{~A} \\ & \mathrm{D}^{0.72}(\text { sorghum } 12-18 \% \mathrm{wb}) \\ & \text { soybean } 12 \% \mathrm{wb}) \end{aligned}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{h}} \text { - volume flow, } \mathrm{m}^{3} / \mathrm{hr} \\ & \mathrm{~A} \text { - area of the orifice, } \mathrm{cm}^{2} \\ & \mathrm{D} \text { - hydraulic diameter, } \mathrm{cm} \end{aligned}$
Moisture Content, Wet Basis $\mathrm{MC}=\frac{\mathrm{W}_{\mathrm{i}}-\mathrm{W}_{\mathrm{o}}}{\mathrm{~W}_{\mathrm{i}}}$	MC - moisture content, \% wb W_{i} - initial weight of sample, g W_{o} - oven dry weight of the sample, g

GRAIN STORAGE STRUCTURE

Moisture Content, Dry Basis $\mathrm{MC}=\frac{\mathrm{W}_{\mathrm{i}}-\mathrm{W}_{\mathrm{o}}}{\mathrm{~W}_{\mathrm{o}}}$	MC - moisture content, \% wb W_{i} - initial weight of sample, g W_{o} - oven dry weight of the sample, g
MC Wet to Dry Basis $\mathrm{MC}_{\mathrm{d}}=\frac{\mathrm{MC}_{\mathrm{w}}}{100-------\mathrm{MC}_{\mathrm{w}}}$	MC_{d} - moisture content dry basis, \% MC_{w} - moisture content wet basis, \%
MC Dry to Wet Basis $\mathrm{MC}_{\mathrm{w}}=\frac{\mathrm{MC}_{\mathrm{d}}}{10--------\mathrm{MC}_{\mathrm{d}}}$	MC_{w} - moisture content wet basis, \% MC_{d} - moisture content dry basis, \%
Warehouse Capacity (Height of Sack in Pile $=0.225 \mathrm{~m}$) $\begin{array}{ll} \mathrm{C}_{\mathrm{wh}}=15(\mathrm{~L} \mathrm{~W} \mathrm{H}): & \text { Rice } \\ \mathrm{C}_{\mathrm{wh}}=10(\mathrm{~L} \mathrm{~W} \mathrm{H}): & \text { Palay } \\ \mathrm{C}_{\mathrm{wh}}=12\left(\mathrm{~L} \mathrm{~W} \mathrm{H}^{2}\right): & \text { Corn } \end{array}$	C_{wh} - estimated warehouse capacity, bags L - effective length of warehouse, m W - effective width of warehouse, m H - effective height of warehouse, m

HEAT TRANSFER

Conduction (Homogenous Wall) $\mathrm{Q}_{\mathrm{k}}=\mathrm{k} \mathrm{~A}\left(\mathrm{~T}_{\mathrm{o}}-\mathrm{T}_{\mathrm{i}}\right) / \mathrm{x}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{k}} \text { - heat transfer rate, } \mathrm{W} \\ & \mathrm{k} \text { - thermal conductivity, } \mathrm{W} /{ }^{\circ} \mathrm{K}-\mathrm{m} \\ & \mathrm{~A} \text { - surface area, } \mathrm{m}^{2} \\ & \mathrm{~T}_{\mathrm{o}} \text { - outside wall temperature, }{ }^{\circ} \mathrm{K} \\ & \mathrm{~T}_{\mathrm{i}} \text { - inside wall temperature, }{ }^{\circ} \mathrm{K} \\ & \mathrm{x} \text { - wall thickness, } \mathrm{m} \\ & \hline \end{aligned}$
Conduction (Composite Wall) $\mathrm{Q}_{\mathrm{k}}=\frac{\mathrm{A}\left(\mathrm{~T}_{1}-\mathrm{T}_{4}\right)}{\mathrm{x}_{12} / \mathrm{k}_{12}+\mathrm{x}_{23} / \mathrm{k}_{23}+\mathrm{x}_{34} / \mathrm{k}^{34}}$	Q_{k} - heat transfer rate, W k - thermal conductivity, $\mathrm{W} /{ }^{\circ} \mathrm{K}-\mathrm{m}$ A - surface area, m^{2} T_{4} - outside wall temperature, ${ }^{\circ} \mathrm{K}$ T_{1} - inside wall temperature, ${ }^{\circ} \mathrm{K}$ x - wall thickness, m $1,2,3,4$ - represent wall surfaces

HEAT TRANSFER

Conduction (Homogenous Cylindrical Wall) $\mathrm{Q}_{\mathrm{k}}=\frac{2 \pi \mathrm{~kL}\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right)}{\mathrm{L}_{\mathrm{n}} \mathrm{ro} / \mathrm{ri}}$	Q_{k} - heat transfer rate, W K - thermal conductivity, $\mathrm{W} /{ }^{\circ} \mathrm{K}-\mathrm{m}$ A - surface area, m^{2} L - length of cylinder, m T_{o} - outside wall temperature, ${ }^{\circ} \mathrm{K}$ T_{i} - inside wall temperature, K r - radius of wall, m o, i - outside and inside wall surfaces
Convection $\mathrm{Q}_{\mathrm{h}}=\mathrm{h} \mathrm{~A}\left(\mathrm{~T}_{\mathrm{o}}-\mathrm{T}_{\mathrm{i}}\right)$	Q_{h} - heat transfer rate, W h - heat transfer coefficient, W-m ${ }^{2}-{ }^{\circ} \mathrm{K}$ A - surface area, m^{2} T_{f} - fluid temperature, ${ }^{\circ} \mathrm{K}$ T_{s} - surface temperature, ${ }^{\circ} \mathrm{K}$
Radiation $\mathrm{Q}_{\mathrm{r}}=\varepsilon \lambda \mathrm{AT}^{4}$	Qғ - heat trabsfer rate, W ε - emmisivity λ - Stefan-Boltzman constant, $5.7 \times 104 \mathrm{~W} / \mathrm{m}^{2}-{ }^{\circ} \mathrm{K}^{4}$ A - surface area, m^{2} T - temperature of the surface of the material, ${ }^{\circ} \mathrm{K}$

HUMAN AND ANIMAL POWER

Human Power $P_{g}=0.35-0.092 \log t$	$\mathrm{P}_{\mathrm{g}}-$ power generated, hp t - time, minutes
Required Human Rest Period $\operatorname{Tr}=60[1-250 / \mathrm{P}]$	Tr - required rest period, $\mathrm{min} / \mathrm{hr}$ of work P - actual rate of energy consumption, watts
Animal Pull $P=\frac{W L_{1} \mu}{\left(L+h_{2} \mu\right) \cos \alpha+L_{2} \mu \sin \alpha}$	P - pull, kg W - animal weight, kg L_{1} - horizontal distance between front foot and center of gravity of the animal, m μ - coefficient of friction between hoof and ground surface L - horizontal distance between front and rear feet, m L_{2} - horizontal distance of the neck load point from the front foot, m h_{2} - height of neck load point from the ground, m α - angle of line of pull from horizontal, deg
Draft Force of Ox $F=[300 \mathrm{E} / \mathrm{D}]-0.6 \mathrm{M}$	F - averge draft force, N E - energy available for work, MJ D - distance travelled, km M - weight of ox, kg

HUMAN AND ANIMAL POWER

Drawbar Horsepower $\mathrm{DHP}=\mathrm{F} \mathrm{~V}$	DHP - draw bar horsepower, hp F - load, kg V - speed of animal, $\mathrm{m} / \mathrm{sec}$
Total Draft $D_{t}=N A \quad D_{s} f$	$\mathrm{D}_{\mathrm{t}}-$ total draft, kg NA - number of animals D_{s} - draft per animal F - factor, 0.63 for 6 animals and 0.95 for 2 animals
Animal Energy Used for Work $\begin{aligned} E= & A F M+B F L+W / C \\ & +[9.81 \mathrm{H} \mathrm{M}] / D \end{aligned}$ $\mathrm{C}=$ work done/energy used $\mathrm{D}=$ work done in raising body wieght / energy used	E - extra energy used for work, kJ A - energy used to move 1 kg of body weight 1 m horizontally, J F - distance travelled, km M - liveweight, kg L - load carried, kg B - energy used to move 1 kg of applied load 1 m horizontally, J W - work done in pulling load, kJ C - efficiency of doing mechanical work, decimal H - distance move vertically upwards, km D - efficiency of raising body weight, decimal

HYDRAULIC OF WELL

Rate of Flow (Gravity Well) $\mathrm{q}=\frac{\pi \mathrm{K}\left(\mathrm{H}^{2}-\mathrm{h}^{2}\right)}{\log _{\mathrm{e}} \mathrm{R} / \mathrm{r}}$	q - rate of flow, $\mathrm{m}^{3} / \mathrm{s}$ K - hydraulic conductivity, m/s H - height of the static water level above the bottom of the water-bearing formation, m h - height of the water level at the well measured from the bottom of the water bearing formation, m R - radius of influence, m r - radius of well, m
Rate of Flow (Artesian Well) $q=\frac{2 \pi K d(H-h)}{\log _{e} R / r}$	q - rate of flow, $\mathrm{m}^{3} / \mathrm{s}$ K - hydraulic conductivity, m/s d - thickness of the confined layer, m H - height of the static piezometric surface above the top of the water-bearing formation, m h - height of the water in the well above the top of the water bearing formation, m R - radius of influence, m r - radius of well, m

HYDRAULICS

Static Pressure $\mathrm{P}=\mathrm{WH}$	$\begin{aligned} & \text { P - intensity of pressure, } \mathrm{kg} / \mathrm{m}^{2} \\ & \mathrm{~W} \text { - unit weight of liquid, } 1000 \mathrm{~kg} / \mathrm{m}^{3} \\ & \mathrm{H} \text { - depth of water, } \mathrm{m} \end{aligned}$
Continuity Equation $\mathrm{Q}=\mathrm{A} \mathrm{~V}$	$\begin{aligned} & \hline \mathrm{Q}-\text { discharge, } \mathrm{m}^{3} / \mathrm{sec} \\ & \text { A - cross sectional area of pipe, } \mathrm{m}^{2} \\ & \mathrm{~V} \text { - average velocity of water, } \mathrm{m} / \mathrm{s} \end{aligned}$
Velocity of Flow $\mathrm{V}=[2 \mathrm{~g} \mathrm{H}]^{1 / 2}$	$\begin{aligned} & \mathrm{V} \text { - velocity of flow, } \mathrm{m} / \mathrm{s} \\ & \mathrm{~g} \text { - gravitational acceleration, } \mathrm{m} / \mathrm{s}^{2} \\ & \mathrm{H} \text { - height of water, } \mathrm{m} \end{aligned}$
Friction Loss in Pipe $\mathrm{H}_{\mathrm{f}}=\left[\mathrm{f} \mathrm{~L} \mathrm{~V}^{2}\right] /[2 \mathrm{~g} \mathrm{D}]$	H_{f} - pressure loss in pipe, m f - friction factor L - length of pipe, m V - average velocity of water in pipe, m / s g - gravitational acceleration, $9.8 \mathrm{~m} / \mathrm{s}^{2}$ D - pipe diameter, m

HYDRO POWER

Water Power $\mathrm{P}=9810 \mathrm{~K} \mathrm{Q} \mathrm{H}$	P - power output, watts K - turbine efficiency, 0.25 to 0.9 Q - water flow rate, $\mathrm{m}^{3} / \mathrm{sec}$ H - head, m
Turbine Specific Speed $\mathrm{N}_{\mathrm{s}}=--------\cdots----\mathrm{N}_{\mathrm{t}} \mathrm{P}^{1.25}$	N_{s} - turbine specific speed, dmls N_{t} - turbine speed, rpm P_{o} - shaft Power, kW H - pressure head across turbine, m
Jet Speed $\mathrm{V}_{\mathrm{j}}=\mathrm{C}_{\mathrm{v}}(2 \mathrm{~g} \mathrm{H})^{0.5}$	$\begin{aligned} & \mathrm{V}_{\mathrm{j}}-\text { jet speed, } \mathrm{m} / \mathrm{s} \\ & \mathrm{C}_{\mathrm{v}}-\text { nozzle coefficient of velocity, } 0.9-0.97 \\ & \mathrm{~g}-\text { gravitational acceleration, } 9 \mathrm{~m} / \mathrm{sec}^{2} \\ & \mathrm{H}-\text { head, } \mathrm{m} \end{aligned}$
Bucket Speed $\mathrm{V}_{\mathrm{b}}=0.46 \mathrm{~V}_{\mathrm{i}}$	V_{b} - bucket speed, m / s V_{j} - jet speed, m / s
Runner Diameter $\mathrm{D}_{\text {run }}=39 \text {--------------- }$	$\mathrm{D}_{\text {run }}$ - runner diameter, m H - head, m N_{t} - shaft speed, rpm
Nozzle Diameter $D_{n}=0.54-------\cdots----$	D_{n} - nozzle diameter, m Q - water flow rate, $\mathrm{m}^{3} / \mathrm{s}$ H - head, m
Number of Buckets $\mathrm{N}_{\mathrm{b}}=0.5------\cdots--15$	H_{b} - number of buckets $\mathrm{D}_{\text {run }}$ - runner diameter, m D_{n} - nozzle diameter, m
Bucket Width $\mathrm{W}_{\mathrm{b}}=3 \quad \mathrm{D}_{\mathrm{n}}$	W_{b} - bucket width, m D_{n} - nozzle diameter, m

INFILTRATION, EVAPORATION AND TRANSPIRATION

Infiltration Through Saturated Homogenous Soil $\mathrm{q}=\mathrm{KhA} / \mathrm{L}$	q - flow rate, $\mathrm{m}^{3} / \mathrm{s}$ K - hydraulic conductivity of flow, m/s h - head, m A - cross-sectional area of flow, m^{2} L - length of flow, m
Evaporation of Water (Pans and Shallow Ponds) $\mathrm{E}=(15+0.93 \mathrm{~W})\left(\mathrm{C}_{\mathrm{s}}-\mathrm{C}_{\mathrm{d}}\right)$	E - rate of evaporation, mm/day W - average wind velocity at 0.15 m , kph C_{s} - saturated vapor pressure at the temperature of the water surface, mm Hg C_{d} - actual vapor pressure of the air (Cs x relative humidity, mm Hg

INFILTRATION, EVAPORATION AND TRANSPIRATION

Evaporation of Water (Small Lakes and Reservoirs) $\mathrm{E}=(11+0.68 \mathrm{~W})\left(\mathrm{C}_{\mathrm{s}}-\mathrm{Cd}\right)$	E - rate of evaporation, $\mathrm{mm} /$ day W - average wind velocity at $0.15 \mathrm{~m}, \mathrm{kph}$ C_{s} - saturated vapor pressure at the temperature of the water surface, mm Hg C_{d} - actual vapor pressure of the air (Cs x relative humidity, mm Hg
Evapotranspiration (Rice Crops Wet Season)	ET - evapotranspiration rate, mm/day E - pan evaporation, mm/day
Evapotranspiration (Rice Crops Dry Season) $\begin{aligned} & \mathrm{ET}=0.8 \mathrm{E}+0.5: \begin{array}{l} \text { vegetative } \\ \text { stage } \end{array} \\ & \mathrm{ET}=0.9 \mathrm{E}+0.5: \begin{array}{l} \text { reproductive } \\ \text { stage } \end{array} \end{aligned}$	ET - evapotranspiration rate, mm/day E - pan evaporation, mm/day

INTEGRAL CALCULUS

Indefinite Integral $\int f(x) d x=F(x)+C$	$\begin{aligned} & \int=\text { integral sign } \\ & x=\text { integrand } \\ & C=\text { constant integration } \end{aligned}$
Properties of Indefinite Integral A. definition of integral $\int \mathrm{du}=\mathrm{u}+\mathrm{C}$ B. $\begin{aligned} & \int(d u+d v+d w+\ldots)=\int d u+\int d v \\ & +\int d u+\ldots \end{aligned}$ C. $\int C d u=C \int d u$	u - is any function C - constant factor
Fundamental Integration Formulas A. Power formula $\int \mathrm{u}^{\mathrm{n}} \mathrm{du}=\frac{\mathrm{u}^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{C}$ B. Logarithm $\int \frac{d u}{}=\ln u+C$ C. Exponential Function $\int \mathrm{a}^{\mathrm{u}} \mathrm{du}=\frac{\mathrm{a}^{\mathrm{u}}}{\ln \mathrm{a}}+\mathrm{C}$ D. Trigonometric function $\int \cos u d u=\sin u+C$ $\int \sin u d u=-\cos u+C$ $\int \sec ^{2} u d u=\tan u+C$ $\int \csc ^{2} u d u=-\cot u+C$ $\int \sec u \tan u d u=\sec u+C$ $\int \csc u \cot u d u=-\csc u+C$	a - constant u - any function
Integral of $\tan u, \cot u, \sec u$ and $\csc u$: $\begin{aligned} & \int \tan u d u=-\ln \cos u+C \\ & \int \cot u d u=\ln \sin u+C \\ & \int \sec u d u=\ln (\sec +\tan u)+C \\ & \int \csc u d u=\ln (\csc u-\cot u)+C \\ & \text { or } \\ & \int \csc u d u=-\ln (\csc u+\cot u)+C \end{aligned}$	

INTEGRAL CALCULUS

Transformation Using Trigonometric Formulas

Type I
$\int \sin ^{m} u \cos ^{n} u d u$
$\int \sin ^{\mathrm{m}} u \cos ^{\mathrm{n}-1} \cos u d u$
$\int \cos ^{\mathrm{n}} \mathrm{u} \sin ^{\mathrm{m}-1} \sin u d u$
Type II
$\int \tan ^{m} u d u$ or $\int \cot ^{m} u d u$
$\int \tan ^{m-2} u \tan ^{2} u d u$
$\int \cot ^{n} u \csc ^{m-2} u \csc ^{2} u d u$
Type IV
$\int \sin ^{m} u \cos ^{n} u d u$
if $\mathrm{m}=\mathrm{n}$
$\int(\sin u \cos u)^{n} d u$
$\int \sin ^{m} u d u$
$\int\left(\sin ^{2} u\right)^{m / 2} d u$
$\int \cos ^{n} u d u$

s Formula
 Walli's Formula

$$
\int_{0}^{\pi / 2} \sin ^{m} \mathrm{x} \cos ^{\mathrm{n}} \mathrm{x} d \mathrm{x}=\frac{\left[(\mathrm{m}-1)(\mathrm{m}-3)(\mathrm{m}-5) \ldots, \text { or }_{1}^{2}\right][(\mathrm{n}-1)(\mathrm{n}-3)]}{[(\mathrm{m}+\mathrm{n})(\mathrm{m}+\mathrm{n}-2)(\mathrm{m}+\mathrm{n}-4) \ldots \text { or }]_{1}^{2}}
$$

Inverse Trigonometric Functions

$\int d u / a^{2}+u^{2}=1 / a \arctan u / a+C$
$\int \mathrm{du} / \sqrt{\mathrm{a}^{2}}-\mathrm{u}^{2}=\arcsin \mathrm{u} / \mathrm{a}+\mathrm{C}$

Integration by Parts

$\int u d v=u v-\int v d u$

INTEGRAL CALCULUS

Partial Fractions A. Linear and Distinct Factors $\frac{\mathrm{A}}{\mathrm{ax}+\mathrm{b}}$ B. Linear and Repeated Factors $\frac{\mathrm{A}}{\mathrm{ax}+\mathrm{b}}+\frac{\mathrm{B}}{(\mathrm{ax}+\mathrm{b})^{2}}+\frac{\mathrm{C}}{(\mathrm{ax}+\mathrm{b})^{3}}+\ldots \frac{\mathrm{Z}}{(\mathrm{ax}+\mathrm{b})^{\mathrm{n}}}$ C. Quadratic and Distinct Factor $\frac{\mathrm{A}(2 \mathrm{ax}+\mathrm{b})+\mathrm{B}}{\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}}$	$\mathrm{ax}+\mathrm{b}$ - factor of the denomination $(a x+b)^{n}-$ factor of the denominator $a x^{2}+b x+c-$ factor of the denominator - cannot be - factored
Volume of Solids of Revolution Volume of circular disk $=\pi r^{2} t$ $\mathrm{dv}=\pi \mathrm{r}^{2} \mathrm{t}$ $\mathrm{v}=\pi \int \mathrm{r}^{2} \mathrm{t}$ If using vertical element: $\mathrm{v}=\pi \int_{\mathrm{x}_{1}}^{\mathrm{x}_{2}}\left(\mathrm{y}_{\mathrm{h}}-\mathrm{y}_{1}\right)^{2} \mathrm{dx}$ If using horizontal element: $\mathrm{v}=\pi \int_{\mathrm{y}_{1}}^{\mathrm{y}_{2}}\left(\mathrm{x}_{\mathrm{R}}-\mathrm{x}_{\mathrm{L}}\right)^{2} \mathrm{dy}$	r - radius t - time

INTEGRAL CALCULUS

Volume Element: Circular Ring Vol. of circular ring $=\pi r_{0}^{2} t-\pi r_{i}^{2} t$ $\mathrm{dv}=\pi\left(\mathrm{r}_{0}^{2}-\mathrm{r}_{\mathrm{i}}^{2}\right) \mathrm{t}$ $v=\pi \int\left(r_{0}^{2}-r_{i}^{2}\right) t$ Vol. of cylindrical shell $=2 \pi \mathrm{rht}$ $\begin{aligned} \mathrm{d} \mathrm{v} & =2 \pi \mathrm{rht} \\ \mathrm{v} & =2 \pi \int \mathrm{rht} \end{aligned}$	r_{0} - the distance from axis of revolution to other end of the area element r_{i} - the distance from axis of revolution to the nearest end of area element $\mathrm{t}-\mathrm{dx}$ (if using vertical element) t - dy (if using horizontal element) r - distance from area element to axis of revolution If using vertical element; $\begin{aligned} & \mathrm{t}=\mathrm{dx} \\ & \mathrm{~h}=\mathrm{y}_{\mathrm{h}} \mathrm{y}_{\mathrm{L}} \end{aligned}$ If using horizontal element; $\begin{aligned} & \mathrm{t}=\mathrm{dy} \\ & \mathrm{~h}=\mathrm{x}_{\mathrm{R}}-\mathrm{x}_{\mathrm{L}} \end{aligned}$
Pappu's Theorem Volume $=$ area $(2 \pi R)$ If y-axis the axis of revolution; Volume $=2 \pi \overline{\mathrm{x}}$ (area) If $\mathrm{y}=\mathrm{b}$ is the axis of revolution; Volume $=2 \pi \bar{y}-b)($ area $)$ If $x=a$ is the axis of revolution; Volume $=2 \pi(a-\bar{x})($ area $)$	R - distance from centroid to axis of revolution

IRRIGATION EFFICIENCY

Water Conveyance Efficiency $\xi_{\mathrm{c}}=100 \mathrm{~W}_{\mathrm{d}} / \mathrm{W}_{\mathrm{i}}$	ξ_{c} - water conveyance efficiency, $\%$ W_{d} - water delivered to distribution system, m^{3} W_{i} - water introduced to the distribution system, m^{3}
Water Application Efficiency $\xi_{\mathrm{a}}=100 \mathrm{~W}_{\mathrm{s}} / \mathrm{W}_{\mathrm{d}}$	ξ_{a} - water application efficiency, \% W_{s} - water stored in the soil root zone, m^{3} W_{d} - water delivered to the area being irrigated, m^{3}
Water Use Efficiency $\xi_{\mathrm{u}}=100 \mathrm{~W}_{\mathrm{u}} / \mathrm{W}_{\mathrm{d}}$	ξ_{u} - water use efficiency, \% W_{u} - water beneficially used, m^{3} W_{d} - water delivered to the area being irrigated, m^{3}
Water Storage Efficiency $\xi_{\mathrm{s}}=100 \mathrm{~W}_{\mathrm{s}} / \mathrm{W}_{\mathrm{n}}$	ξ_{s} - water storage efficiency, \% W_{s} - water stored in the root zone during irrigation, m^{3} W_{n} - water needed in the root zone prior to irrigation, m^{3}

IRRIGATION EFFICIENCY

Water Distribution Efficiency	ξ_{d} - water distribution efficiency, \% $\mathrm{y}-$ - average numerical deviation in depth of water stored from the average stored during irrigation, mm
$\xi_{\mathrm{d}}=100(1-\mathrm{y} / \mathrm{d})$	

IRRIGATION REQUIREMENT

Water Applied $\mathrm{Q}=27.8 \mathrm{AD} / \mathrm{T}$	Q - size of stream, lps A - area irrigated, hectares D - depth of water applied, cm T - time required to irrigate, hours
Time of Application $\mathrm{T}=\frac{\mathrm{P}_{\mathrm{w}} \mathrm{~A}_{\mathrm{s}} \mathrm{D} \mathrm{~A}}{100 \mathrm{CQ}}$	T - time of application, hours P_{w} - soil moisture in dry weight, \% A_{s} - apparent specific gravity, decimal D - depth of root zone, cm A - area irrigated, hectares Q - size of stream, cubic m per hour C - constant equal to 100
Evapotranspiration $\mathrm{ET}=\mathrm{E}+\mathrm{T}$	ET - evapotranspiration, mm/day E - evaporation, mm/day T - transpiration, mm/day
Water Requirement $\mathrm{WR}=\mathrm{ET}+\mathrm{P}$	WR - water requirement, mm/day ET - evapotranspiration. mm/day P - percolation, mm/day

IRRIGATION REQUIREMENT

Irrigation Requirement $\mathrm{IR}=\mathrm{WR}+\mathrm{FW}-\mathrm{ER}$	IR - irrigation requirement, $\mathrm{mm} /$ day WR - water requirement, mm/day FW - farm waste, mm/day ER - effective rainfall, mm/day
Farm Turnout Requirement $\mathrm{FTR}=\mathrm{IR}+\mathrm{FDL}$	FTR - farm turnout requirement, mm/day IR - irrigation requirement, mm/day FDL - farm ditch loss, mm/day
Diversion Requirement $\mathrm{DR}=\mathrm{FTR}+\mathrm{CL}$	DR - diversion requirement, mm /day FTR - farm turnout requirement, mm/day CL - conveyance loss, mm/day

MATERIAL HANDLING

Belt Capacity $\mathrm{C}=1710 \mathrm{~A} \mathrm{~S}$	C - capacity, bu/hr A - Area of cross-section of belt, m^{2} S - Belt speed, m/min
Horsepower to Drive Empty Belt Conveyor $\mathrm{HP}_{\mathrm{e}}=\frac{\mathrm{S}}{0.3048}+\frac{\mathrm{A}+\mathrm{B}(3.28 \mathrm{~L})}{100}$	HP_{e} - horsepower (empty), hp S - belt speed, $\mathrm{m} / \mathrm{min}$ A - constant, 0.20 to 0.48 @ 36-76 belt width B - constant, 0.00140 to 0.00298 @ 36-76 belt width L - belt length, m
Horsepower to Convey Materials in Belt Conveyor on Level Position $\mathrm{HP}_{1}=\mathrm{C} \times \frac{0.48+0.01 \mathrm{~L}}{100}$	HP_{1} - horsepower to drive belt conveyor on level position, hp C - belt capacity, tph L - belt length, m
Horsepower to Lift Materials in Belt Conveyor $\mathrm{HP}_{\mathrm{h}}=\frac{\mathrm{h}}{0.3048} \times 1.015 \times \frac{\mathrm{C}}{1000}$	$\begin{aligned} & \mathrm{HP}_{\mathrm{h}} \text { - horsepower to lift materials, hp } \\ & \mathrm{h} \text { - lift, m} \\ & \mathrm{C} \text { - capacity, tph } \end{aligned}$

MATERIAL HANDLING

Total Horsepower of Belt Conveyor $H P_{t}=H P_{e}+H P_{1}+H P_{h}$	HP_{t} - total horsepower, hp HP_{e} - power to drive empty, hp HP_{1} - power to drive in level, hp HP_{h} - power to lift materials, hp
Capacity of Screw Conveyor $C=\frac{\left(D^{2}-d^{2}\right)}{36.6} \times P \times N$	C - capacity of screw conveyor, $\mathrm{ft}^{3} / \mathrm{hr}$ D - screw diameter, in. D - shaft diameter, in P - screw pitch, in (normally equal to D) N - shaft speed, rpm
Power Requirement of Screw Conveyor $\mathrm{HP}=\frac{\mathrm{L}(\mathrm{D} \mathrm{~S}+\mathrm{Q} \mathrm{~K})}{1,000,000}$	HP - horsepower requirement, hp L - overall length, ft D - bearing factor, 10 to 106 for ball bearing @ conveyor diameter of 7.5 to 40 cm S - Speed, rpm Q - quantity of materials, $\mathrm{lbs} / \mathrm{hr}$ K -material factor, 0.4 to 0.7
Motor Horsepower of Screw Conveyor $\mathrm{MHP}=\frac{\mathrm{HP} \mathrm{P}}{0.85}$	MHP - motor horsepower, hp HP - power requirement, hp $\mathrm{P}-2$ when HP is less than $1 ; 1.5$ when HP is between 1 and 2

MATERIAL HANDLING

Horsepower Requirement when Screw is Inclined Position $\mathrm{HP}_{\mathrm{i}}=\mathrm{HP}_{\mathrm{h}} \sin \alpha$	HP_{i} - power requirement when screw is in inclined position, hp HP_{h} - power requirement in horizontal position, hp α - inclination of the screw, deg
Bucket Elevator Speed $\mathrm{N}=\frac{54.19}{\mathrm{R}^{0.5}}$	N - speed of the head pulley, rpm R - radius of wheel plus $1 / 2$ the projection of bucket, ft
Bucket Velocity $\mathrm{V}_{\mathrm{b}}=\pi \mathrm{DN}$	V_{b} - velocity of bucket, fpm D - pulley diameter, feet N - pulley speed, rpm
Bucket Capacity $\mathrm{C}=60 \mathrm{Q}_{\mathrm{b}} \mathrm{n}_{\mathrm{b}} \mathrm{~S}_{\mathrm{b}}$	C - elevator capacity, $\mathrm{m}^{3} / \mathrm{hr}$ Q_{b} - bucket capacity, $\mathrm{m}^{3} / 1,000,000$ n_{b} - number of buckets per meter of belt S_{b} - belt speed, $\mathrm{m} / \mathrm{min}$
Horsepower Requirement of Bucket Elevator $\mathrm{HP}=\frac{\mathrm{Q} \mathrm{H} \mathrm{~F}}{4562}$	HP - power requirement, hp Q - bucket elevator capacity, $\mathrm{kg} / \mathrm{min}$ H-lift, m F-1.5 for elevator loaded in down side; 1.2 for elevator loaded in up side

PIPE FLOW

Flow from Vertical Pipe (50-200 mm Pipe Diameter with $\mathbf{H}=\mathbf{0 . 0 7 5}$ to 0.1 m) $\mathrm{Q}=\frac{0.87 \mathrm{D}^{2} \mathrm{H}^{1 / 2}}{-----------------}$	$\begin{aligned} & \text { Q - pipe discharge, lps } \\ & \text { D - pipe diameter, mm } \\ & \text { H - vertical rise of water jet, } m \end{aligned}$
Flow from Vertical Pipe ($\mathbf{5 0 - 2 0 0} \mathbf{~ m m}$ Pipe Diameter with $\mathbf{H}=\mathbf{0 . 3}$ to 0.6 m) $\mathrm{Q}=\frac{0.97 \mathrm{D}^{2} \mathrm{H}^{1 / 2}}{------------------}$	$\begin{aligned} & \mathrm{Q} \text { - pipe discharge, } \mathrm{lps} \\ & \mathrm{D} \text { - pipe diameter, mm } \\ & \text { H - vertical rise of water jet, } \mathrm{m} \end{aligned}$
Flow from Horizontal Pipe $\mathrm{Q}=3.6 \frac{\mathrm{~A} \mathrm{X}}{\mathrm{y}^{1 / 2}}$	Q - discharge, gpm A - cross sectional area of water at the end of the pipe, in2 X - coordinate of the point on the surface measured parallel to the pipe, in y - vertical coordinate, in

POWER TILLER

Belt Slip $\% B S=\frac{\mathrm{N}_{0}-\mathrm{N}_{1}}{\mathrm{~N}_{0}} \times 100$	BS - belt slip, \% N_{0} - revolution per minute of the driven pulley without slip, rpm N_{1} - revolution per minute of the driven pulley under load, rpm
Wheel Slip $\% \mathrm{WS}=\frac{\mathrm{Nw}_{1}-\mathrm{Nw}_{0}}{\mathrm{Nw}_{1}} \times 100$	Nw_{1} - sum of the revolutions of all driving wheels for a given distance with slip, rpm Nw_{0} - sum of the revolutions of all driving wheels for the same distance without slip, rpm
Average Swath or Width of Cut $S=\frac{W}{2 n}$	S - average swath, m W - is the width of plot, m n - is the number of rounds 2 - is the number of trips per round
Total Distance Traveled $\mathrm{D}=\frac{\mathrm{A}}{\mathrm{~S}}=2 \mathrm{~nL}$	D - distance traveled, m A - is the area of plot, m^{2} L - is the length of the plot, m S - average swath, m n - is the number of rounds

POWER TILLER

POWER TILLER

Field Efficiency $\mathrm{F}_{\mathrm{eff}}=\frac{\mathrm{EFC}}{\mathrm{TFC}} \times 100$	$\begin{aligned} & \mathrm{F}_{\text {eff }}-\text { field efficiency, } \% \\ & \mathrm{EFC} \text { - effective field capacity, ha/hr } \\ & \text { TFC - theoretical field capacity, ha/hr } \end{aligned}$
Fuel Consumption $F C=\frac{V}{t}$	$\begin{aligned} & \text { FC - fuel consumption, lph } \\ & \text { V - volume of fuel consumed, } L \\ & t \text { - total operating time, } h \end{aligned}$
Axle/Rotary Shaft Torque $\mathrm{T}=\mathrm{F} \mathrm{~L}$	T-shaft torque, kg-m F - axle or rotary shaft load, kg L - length of pony brake arm, m
Axle/Rotary Shaft Power $P=\frac{F_{t} N}{1340}$	P - shaft power, KW F_{t} - total axle or rotary shaft load, kg N - speed of axle or rotary shaft, rpm
Specified Fuel Consumption $\mathrm{SFC}=\frac{\mathrm{F}_{\mathrm{c}} \mathrm{P}_{\mathrm{f}}}{\mathrm{P}}$	$\begin{aligned} & \text { SFC - specific fuel consumption, }(\mathrm{g} / \mathrm{KW}-\mathrm{h}) \\ & \mathrm{F}_{\mathrm{c}}-\text { fuel consumption, } \mathrm{L} / \mathrm{h} \\ & \mathrm{P}_{\mathrm{f}} \text { - density of fuel, } \mathrm{g} / \mathrm{h} \\ & \mathrm{P} \text { - axle or rotary shaft power, } \mathrm{KW} \end{aligned}$

PUMP

Fluid Horsepower $\text { Fhp }=\frac{\mathrm{q} \gamma \mathrm{H}}{550}$	Fhp - fluid horsepower, hp q - flow rate, cfs γ - fluid specific weight, lb per cu ft H - total head, ft
Hydraulic Efficiency $\xi_{\mathrm{h}}=\frac{\mathrm{H} \mathrm{Q}}{\mathrm{P} 33000} \times 100$	$\begin{aligned} & \text { 乡h - hydraulic efficiency, } \% \\ & \mathrm{H} \text { - head, } \mathrm{ft} \\ & \mathrm{Q} \text { - mass flow rate, } \mathrm{lb} / \mathrm{min} \\ & \mathrm{P} \text { - power input, hp } \end{aligned}$
Pump Discharge Requirement $\mathrm{Q}=183.4 \frac{\mathrm{~A} \mathrm{D}}{\mathrm{~F} \mathrm{H}}$	Q - pump discharge requirement, gpm A - design irrigable area, hectares D - depth of irrigation, inches F - number of days permitted for irrigation, days H - average number of hours of operation, hours per day
Water Horsepower $P_{w}=\frac{Q H}{102}$	P_{w} - water horsepower, hp Q - discharge, lps H - total head, m

PUMP

Pump Brake Horsepower $\mathrm{BHP}=\mathrm{P}_{\mathrm{w}} / \xi_{\mathrm{p}}$	BHP - pump brake horsepower, hp P_{w} - water horsepower, hp ξ_{p} - pump efficiency, decimal
Pump Motor Horsepower $\mathrm{MHP}=\mathrm{BHP} / \xi_{\mathrm{m}}$	MHP - motor horsepower, hp BHP - pump brake horsepower, hp ξ_{m} - motor efficiency, decimal
Engine Horsepower $\mathrm{EHP}=\mathrm{BHP} / \xi_{\mathrm{m}}$	EHP - engine horsepower, hp BHP - pump brake horsepower, hp ξ_{m} - engine efficiency, decimal 80% for diesel and 70% for gasoline
Overall System Efficiency $\xi_{\mathrm{s}}=\left(\mathrm{P}_{\mathrm{w}} / \mathrm{MHP}\right) 100$	ξ_{s} - overall system efficiency, \% P_{w} - water horsepower, hp MHP - motor horsepower, hp
Total Pump Head $\mathrm{H}_{\mathrm{t}}=\mathrm{H}_{\mathrm{s}}+\left(\mathrm{HL}_{\mathrm{sp}}+\mathrm{HL}_{\mathrm{f}}\right)$	H_{t} - total head loss, ft H_{s} - head loss due to elevation, ft $\mathrm{HL}_{\text {sp }}$ - friction loss on straight pipe, ft HL_{f} - head loss on fittings, ft
Input Power Delivered to Pump $\mathrm{P}_{\mathrm{i}}=9.8 \mathrm{qh} / \xi_{\mathrm{p}}$	$\begin{aligned} & \mathrm{P}_{\mathrm{i}} \text { - power input delivered to pump, } \mathrm{KW} \\ & \mathrm{q} \text { - discharge rate, } \mathrm{m}_{3} / \mathrm{s} \\ & \mathrm{~h} \text { - total heat, } \mathrm{m} \\ & \xi_{p} \text { - pump efficiency, } 0.20 \text { to } 0.75 \end{aligned}$
Pump Specific Speed $\mathrm{N}_{\mathrm{s}}=\mathrm{CNq}^{1 / 2} / \mathrm{h}^{3 / 4}$	$\begin{aligned} & \mathrm{N}_{\mathrm{s}} \text { - specific speed } \\ & \mathrm{C}-51.65 \\ & \mathrm{~N}-\text { impeller speed, rpm } \\ & \mathrm{q} \text { - flow rate, } \mathrm{m}^{3} / \mathrm{s} \\ & \mathrm{~h}-\text { head, } \mathrm{m} \end{aligned}$

PUMP LAWS

Speed vs Capacity $\mathrm{N}_{1} / \mathrm{N}_{2}=\mathrm{q}_{1} / \mathrm{q}_{2}$	N_{1} - pump speed, rpm N_{2} - pump speed, rpm q_{1} - pump capacity, gpm q_{2} - pump capacity, gpm
Speed vs Head $\mathrm{N}_{1}{ }^{2} / \mathrm{N}_{2}^{2}=\mathrm{H}_{1} / \mathrm{H}_{2}$	N_{1} - pump speed, rpm N_{2} - pump speed, rpm H_{1} - pump head, ft H_{2} - pump head, ft
Speed vs Power $\mathrm{N}_{1}{ }^{3} / \mathrm{N}_{2}^{3}=\mathrm{Hp}_{1} / \mathrm{Hp}_{2}$	N_{1} - pump speed, rpm N_{2} - pump speed, rpm Hp_{1} - pump head, ft Hp_{2} - pump head, ft
Impeller Diameter vs Capacity $\mathrm{D}_{1}{ }^{3} / \mathrm{D}_{2}{ }^{3}=\mathrm{q}_{1} / \mathrm{q}_{2}$	D_{1} - pump diameter, inches D_{2} - pump diameter, inches q_{1} - pump capacity, gpm q_{2} - pump capacity, gpm
Impeller Diameter vs Head $\mathrm{D}_{1}^{2} / \mathrm{D}_{2}^{2}=\mathrm{H}_{1} / \mathrm{H}_{2}$	D_{1} - pump diameter, inches D_{2} - pump diameter, inches H_{1} - pump head, ft H_{2} - pump head, ft
Impeller Diameter vs Horsepower $\mathrm{D}_{1}{ }^{5} / \mathrm{D}_{2}{ }^{5}=\mathrm{Hp}_{1} / \mathrm{Hp}_{2}$	D_{1} - pump diameter, inches D_{2} - pump diameter, inches Hp_{1} - pump power, hp Hp_{2} - pump power, hp

PUMP LAWS

Capacity vs Speed and Diameter $\mathrm{q}_{1} / \mathrm{q}_{2}=\left(\mathrm{N}_{1} / \mathrm{N}_{2}\right)\left(\mathrm{D}_{1}{ }^{3} / \mathrm{D}_{2}^{3}\right)$	q_{1} - pump capacity, gpm q_{2} - pump capacity, gpm N_{1} - pump speed, rpm N_{2} - pump speed, rpm D_{1} - pump diameter, inches D_{2} - pump diameter, inches
Head vs Speed and Diameter $\mathrm{H}_{1} / \mathrm{H}_{2}=\left(\mathrm{N}_{1}^{2} / \mathrm{N}_{2}^{2}\right)\left(\mathrm{D}_{1}^{2} / \mathrm{D}_{2}^{2}\right)$	H_{1} - pump head, ft H_{2} - pump head, ft N_{1} - pump speed, rpm N_{2} - pump speed, rpm D_{1} - pump diameter, inches D_{2} - pump diameter, inches
Horsepower vs Speed and Diameter $\mathrm{Hp}_{1} / \mathrm{Hp}_{2}=\left(\mathrm{N}_{1}^{3} / \mathrm{N}_{2}^{3}\right)\left(\mathrm{D}_{1}^{5} / \mathrm{D}_{2}^{5}\right)$	Hp_{1} - pump power, hp Hp_{2} - pump power, hp N_{1} - pump speed, rpm N_{2} - pump speed, rpm D_{1} - pump diameter, inches D_{2} - pump diameter, inches

RAINFALL AND RUNOFF

Rainfall Intensity $\mathrm{I}=\left(\mathrm{a} \mathrm{~T}^{\mathrm{b}}\right) / \mathrm{d}^{\mathrm{c}}$	I - rainfall intensity, $\mathrm{mm} / \mathrm{hr}$ T - return period, years d - storm duration, min a, b, and c - constant for a given location
Point Rainfall Analysis (Simple Arithmetic Method) $\mathrm{R}_{\mathrm{ave}}=\Sigma \mathrm{R} / \mathrm{n}$	$\mathrm{R}_{\text {ave }}-$ average rainfall, mm R - rainfall record, mm n - number of rainfall stations
Point Rainfall Analysis (Thiessen Method) $\mathrm{R}_{\mathrm{ave}}=\frac{\mathrm{A}_{1} \mathrm{R}_{1}+\mathrm{A}_{2} \mathrm{R}_{2}+\ldots+\mathrm{A}_{\mathrm{n}} \mathrm{R}_{\mathrm{n}}}{\mathrm{~A}_{\mathrm{t}}}$	$\mathrm{R}_{\text {ave }}$ - average rainfall, mm R - rainfall depth, mm $A_{1-n}-$ area within the polygon, m^{2} A_{t} - entire area of the basin, m^{2}
Runoff (Rational Method) $\mathrm{Q}=\mathrm{C} \text { I A / } 360$	Q - peak discharge, $\mathrm{m}^{3} / \mathrm{sec}$ C - runoff constant, 0.05 to 0.95 I - rainfall intensity, $\mathrm{mm} / \mathrm{hr}$ A - drainage area, hectare
Time of Concentration $\mathrm{T}_{\mathrm{c}}=0.0196 \mathrm{~L}^{1.15} \mathrm{H}^{-0.385}$	T_{c} - time of concentration, min L - length of channel, m H - difference in elevation, m

REAPER HARVESTER

Star Wheel Velocity $\mathrm{V}_{\mathrm{w}}=\mathrm{V}_{\mathrm{f}} / \cos \alpha$	V_{w} - average star wheel velocity, m / s V_{f} - machine forward velocity, m / s $\alpha-$ angle of inclination of star wheel, 22 deg
Flat Belt Conveyor Velocity $\begin{aligned} & \mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{wo}} \mathrm{P} \mathrm{~N} / \pi \\ & \mathrm{V}_{\mathrm{b}}=1.4 \mathrm{~V}_{\mathrm{f}} \end{aligned}$	V_{b} - flat belt conveyor velocity, m / s V_{wo} - velocity of outer tip of star wheel lugs, m/s P - pitch of the flat belt lugs, m N - number of star wheel lugs V_{f} - machine forward velocity, m/s
Pitch of the Flat belt Lugs $\mathrm{P}<\mathrm{D} \sin (\pi / \mathrm{N})$	P - pitch of the flat belt lugs, m D - diameter of star wheel, m N - Number of star wheels
Velocity Ratio $\mathrm{K}=\mathrm{V}_{\mathrm{k}} / \mathrm{V}_{\mathrm{f}}$ k falls 1.3 to 1.4	K - velocity ratio V_{k} - average knife velocity, m/s V_{f} - average forward velocity, m / s

REFRIGERATION

Heat Gain on Walls $\mathrm{Q}_{\mathrm{w}}=\mathrm{A} \mathrm{R}_{\mathrm{t}}\left(\mathrm{~T}_{\mathrm{o}}-\mathrm{T}_{\mathrm{i}}\right)$	Q_{w} - heat gain from walls, W A - wall surface area, m^{2} R_{t} - thermal transmittance, $\mathrm{W} / \mathrm{m}-{ }^{\circ} \mathrm{C}$ T_{o} - wall outside temperature, ${ }^{\circ} \mathrm{C}$ T_{i} - wall inside temperature, ${ }^{\circ} \mathrm{C}$
Air Infiltration Load $\mathrm{Q}_{\mathrm{ai}}=\frac{\mathrm{V}_{\mathrm{r}} \mathrm{H}_{\mathrm{f}} \mathrm{AC}}{86400}$	Q_{ai} - air infiltration loss, W V_{r} - room volume, m^{3} H_{f} - heat factor, J AC - Air changes, $\mathrm{KJ} / \mathrm{m}^{3}$
Product Load $\mathrm{Q}_{\mathrm{p}}=\mathrm{W}_{\mathrm{p}} \mathrm{C}_{\mathrm{p}}\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{f}}\right) / 86400$	Q_{p} - product load, W W_{p} - weight of the product, kg $\mathrm{C}_{\mathfrak{p}}$ - specific heat of the product, $\mathrm{J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$ T_{i} - product initial temperature, ${ }^{\circ} \mathrm{C}$ T_{f} - product final temperature, ${ }^{\circ} \mathrm{C}$
Heat of Respiration Load $\mathrm{Q}_{\mathrm{r}}=\mathrm{W}_{\mathrm{p}} \mathrm{HR}_{\mathrm{p}} / 86400$	Q_{r} - heat of respiration load, W W_{p} - weight of the product, kg HR_{p} - product heat of respiration, J / kg-day

REFRIGERATION

Light Load $\mathrm{Q}_{1}=\mathrm{L}_{\mathrm{r}}$	$\begin{aligned} & \mathrm{Q}_{1}-\text { light load, } \mathrm{W} \\ & \mathrm{~L}_{\mathrm{r}} \text { - lamp rating, } \mathrm{W} \end{aligned}$
Human Heat Load $\mathrm{Q}_{\mathrm{h}}=\mathrm{N}_{\mathrm{h}} \mathrm{HR}_{\mathrm{h}} / 86400$	Q_{h} - human heat load, W N_{h} - number of human HR_{h} - heat of respiration of human, J/man-day
Tons of Refrigeration $\mathrm{TR}=\mathrm{TL} / 12,000$	TR - refrigeration capacity, tons of ref TL - total load, BTU/hr
Latent Heat of Freezing $\mathrm{Q}_{\mathrm{lf}}=\mathrm{M}_{\mathrm{w}} \mathrm{LHF}$	Q_{lf} - latent heat of freezing water, KJ M_{w} - mass of water, kg LHF - Latent heat of freezing, $336 \mathrm{KJ} / \mathrm{kg}$

RICE MILLING

Hulling Coefficient $\mathrm{C}_{\mathrm{h}}=\mathrm{W}_{\mathrm{br}} / \mathrm{W}_{\mathrm{p}}$	C_{h} - hulling coefficient, decimal W_{br} - weight of brown rice, grams W_{p} - weight of paddy, grams
Wholeness Coefficient $\mathrm{C}_{\mathrm{w}}=\mathrm{W}_{\mathrm{wbr}} / \mathrm{W}_{\mathrm{br}}$	C_{w} - wholeness coefficient, decimal $\mathrm{W}_{\mathrm{wbr}}$ - weight of whole brown rice, grams W_{br} - weight of brown rice, grams
Hulling Efficiency $\xi_{\mathrm{h}}=\mathrm{C}_{\mathrm{h}} \mathrm{C}_{\mathrm{w}}$	$\xi_{h}-$ hulling efficiency, decimal C_{h} - hulling coefficient, decimal C_{w} - wholeness coefficient, decimal
Percentage Brown Rice Recovery $\% \mathrm{BRR}=\left(\mathrm{W}_{\mathrm{brr}} / \mathrm{W}_{\mathrm{p}}\right) \times 100$	\%BRR - percentage brown rice recovery, \% $\mathrm{W}_{\text {brr }}$ - weight of brown rice, kg W_{p} - weight of paddy, kg
Percentage Broken Milled Rice $\% \mathrm{BR}=\left(\mathrm{W}_{\mathrm{br}} / \mathrm{W}_{\mathrm{mr}}\right) 100$	$\begin{aligned} & \text { \%BR - percentage broken rice, } \% \\ & \mathrm{~W}_{\mathrm{br}} \text { - weight of broken rice, } \mathrm{kg} \\ & \mathrm{~W}_{\mathrm{mr}} \text { - weight of milled rice, } \mathrm{kg} \end{aligned}$
Throughput Capacity $\begin{aligned} & C_{t}=0.2 \mathrm{~W}_{\mathrm{p}} / \mathrm{T}_{\mathrm{o}}: \text { brown rice } \\ & \mathrm{C}_{\mathrm{t}}=\left[\mathrm{W}_{\mathrm{p}} \mathrm{MR}\right] / \mathrm{T}_{\mathrm{o}}: \text { milled rice } \end{aligned}$	C_{t} - throughput capacity, $\mathrm{kg} / \mathrm{hr}$ W_{p} - weigh t paddy input, kg T_{o} - operating time, hr MR - milling recovery, decimal 0.60 to 0.69

RICE MILLING

Percentage Brewer's Rice $\% \mathrm{BrR}=\left(\mathrm{W}_{\mathrm{brr}} / \mathrm{W}_{\mathrm{mr}}\right) 100$	$\% \mathrm{BrR}$ - percentage brewer's rice, $\%$ $\mathrm{W}_{\text {brr }}$ - weight of brewer's rice, kg W_{mr} - weight of milled rice, kg
Hear Rice Recovery $\% \mathrm{HR}=\left(\mathrm{W}_{\mathrm{hr}} / \mathrm{W}_{\mathrm{mr}}\right) 100$	\%HR - head rice recovery, \% W_{hr} - weight of head rice, kg W_{mr} - weight of milled rice
Milling Recovery $\% \mathrm{MR}=\left(\mathrm{W}_{\mathrm{mr}} / \mathrm{W}_{\mathrm{p}}\right) 100$	\% MR - milling recovery, \% W_{mr} - weight of milled rice, $\%$ W_{p} - weight of paddy, kg
Speed of Low Speed Rubber Roller $\mathrm{N}_{\mathrm{s}}=\mathrm{N}_{\mathrm{h}}-\left[0.25 / \mathrm{N}_{\mathrm{h}}\right]$	N_{s} - speed of slower rubber roller, rpm N_{h} - speed of faster rubber rollre, rpm
Number of Compartments for Paddy Separator $\mathrm{N}_{\mathrm{C}}=\mathrm{C}_{\mathrm{b}} / 40 \text { : long grain }$ $\mathrm{N}_{\mathrm{C}}=\mathrm{C}_{\mathrm{b}} / 60$: short grain	N_{C} - number of compartments C_{b} - throughput capacity, kg brown rice per hour
Number of Brake for Vertical Abbrassive Whitener $\begin{aligned} & \mathrm{N}_{\mathrm{B}}=[\mathrm{D} / 100]: \text { Germany } \\ & \mathrm{N}_{\mathrm{B}}=[\mathrm{D} / 100]: \text { Itally } \end{aligned}$	N_{B} - number of brakes, units D - cone diameter, mm

RICE THRESHER

Grain Ratio $\mathrm{R}=\left(\mathrm{W}_{\mathrm{g}} / \mathrm{W}_{\mathrm{gs}}\right)$	R - grain ratio, decimal W_{g} - weight of grain, grams W_{gs} - weight of grain and straw, grams
Actual Capacity $\mathrm{C}_{\mathrm{a}}=\mathrm{W}_{\mathrm{c}} / \mathrm{T}_{\mathrm{o}}$	C_{a} - actual thresher capacity, $\mathrm{kg} / \mathrm{hr}$ W_{c}-weight of threshed clean grain, kg T_{o} - operating time, hr
Corrected Capacity $C_{c}=\frac{100-M C_{o}}{100-M C_{r}} \times \frac{R_{m}}{R_{o}} \times C_{a}$	C_{c} - corrected capacity, $\mathrm{kg} / \mathrm{hr}$ MC_{o} - observed moisture content, \% MC_{r} - reference MC, 20\% R_{m} - reference grain-straw ratio, 0.55 R_{0} - observed grain-straw ratio, decimal C_{a} - actual capacity, $\mathrm{kg} / \mathrm{hr}$
Purity $\mathrm{P}=\left[1-\frac{\mathrm{W}_{\mathrm{u}}-\mathrm{W}_{\mathrm{c}}}{\mathrm{~W}_{\mathrm{c}}}\right] 100$	P - purity, \% W_{u} - weight of uncleaned grain, grams W_{c} - weight of cleaned grains, grams

RICE THRESHER

Total Losses $\mathrm{L}_{\mathrm{t}}=\mathrm{L}_{\mathrm{b}}+\mathrm{L}_{\mathrm{s}}+\mathrm{L}_{\mathrm{u}}+\mathrm{L}_{\mathrm{sc}}$	L_{t} - total losses, kg L_{b} - blower loss, kg L_{s} - separation loss, kg L_{sc} - scattering loss, kg $\mathrm{L}_{\mathrm{u}^{-}}$unthreshed loss, kg
Threshing Efficiency $\xi_{\mathrm{t}}=\frac{\mathrm{W}_{\mathrm{c}}+\mathrm{L}_{\mathrm{b}}+\mathrm{L}_{\mathrm{s}}+\mathrm{L}_{\mathrm{sc}}}{\mathrm{~W}_{\mathrm{c}}+\mathrm{L}_{\mathrm{b}}+\mathrm{L}_{\mathrm{s}}+\mathrm{L}_{\mathrm{u}}+\mathrm{L}_{\mathrm{s}}} \times 100$	$\xi_{\mathrm{t}}-$ threshing efficiency, W_{c} - weight of clean threshed grain, kg L_{b} - blower loss, kg L_{s} - separation loss, kg L_{sc} - scattering loss, kg L_{u} - unthreshed loss, kg
Threshing Recovery $\mathrm{T}_{\mathrm{r}}=\frac{\mathrm{W}_{\mathrm{c}}}{\mathrm{~W}_{\mathrm{c}}+\mathrm{L}_{\mathrm{b}}+\mathrm{L}_{\mathrm{s}}+\mathrm{L}_{\mathrm{u}}+\mathrm{L}_{\mathrm{s}}} \times 100$	T_{r} - threshing recovery, \% W_{c} - weight of clean threshed grain, kg L_{b} - blower loss, kg L_{s} - separation loss, kg L_{sc} - scattering loss, kg L_{u} - unthreshed loss, kg

RICE THRESHER

Cracked Grains $\mathrm{C}_{\mathrm{g}}=\mathrm{N}_{\mathrm{cg}} 100 /\left(\mathrm{N}_{\mathrm{cg}}+\mathrm{N}_{\mathrm{ucg}}\right)$	$\begin{aligned} & \mathrm{C}_{\mathrm{g}}-\text { percentage cracked grains, } \% \\ & \mathrm{~N}_{\mathrm{cg}}-\text { number of cracked grains } \\ & \mathrm{N}_{\mathrm{ucg}}-\text { number of uncracked grains } \end{aligned}$
Damaged Grain $\mathrm{D}_{\mathrm{g}}=\mathrm{N}_{\mathrm{dg}} 100 /\left(\mathrm{N}_{\mathrm{dg}}+\mathrm{N}_{\mathrm{udg}}\right)$	$\begin{aligned} & \hline \mathrm{D}_{\mathrm{g}}-\text { percentage damage grains, } \% \\ & \mathrm{~N}_{\mathrm{dg}}-\text { number of damaged grains } \\ & \mathrm{N}_{\mathrm{udg}}-\text { number of undamaged grains } \end{aligned}$
Fuel Consumption $\mathrm{F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{u}} / \mathrm{T}_{\mathrm{o}}$	F_{c} - fuel consumption, Lph F_{u} - amount of fuel used, liters T_{o} - operating time, hrs

SHAFT, KEY, AND KEWAYS

Horsepower Transmitted $\begin{aligned} & \mathrm{HP}=\mathrm{T} N / 63025 \text { or } \\ & \mathrm{HP}=\mathrm{F} \mathrm{~V} / 33000 \end{aligned}$	HP - horsepower transmitted, hp T - torque, in-lb N - shaft speed, rpm
Torque (Solid Shaft) $\mathrm{T}=\frac{\pi \mathrm{S}_{\mathrm{d}} \mathrm{D}^{3}}{16}$	T - torque, in-lb D - shaft diameter, inches S_{d} - design stress, 6000 psi
Torque (Hollow Shaft) $\mathrm{T}=\frac{\pi \mathrm{S}_{\mathrm{d}}\left(\mathrm{D}_{\mathrm{o}}^{4}-\mathrm{D}_{\mathrm{i}}^{4}\right)}{16 \mathrm{D}_{\mathrm{o}}}$	T - torque, in-lb D - shaft diameter, inches S_{d} - design stress, 6000 psi

SHAFT, KEY, AND KEWAYS

Shaft Diameter (Solid Shaft) $D=\sqrt[3]{\frac{16 \mathrm{~T}}{\pi \mathrm{~S}_{\mathrm{d}}}}$	D - shaft diameter, inches T - torque, in-lb $\mathrm{S}_{\mathrm{d}}-$ design stress, 6000 psi
Shaft Force $\mathrm{F}=\mathrm{T} / \mathrm{r}$	F - force at shaft forces, lb T - torque, in-lb r - radius of shaft, in
Length of Key $\mathrm{L}=\frac{\mathrm{F}}{\sigma_{\text {allow }} \mathrm{W}}$	L - length of key, in F - force, lb $\sigma_{\text {allow }}$ - bearing stress, $25,000 \mathrm{psi}$ W - width of key, in
Length of Key (In Shear) $\mathrm{L}=\frac{3 \mathrm{~F}}{\tau_{\text {all }} \mathrm{W}}$	L - length of key, in F - force, lb $\tau_{\text {all - }}$ allowable shear, $25,000 \mathrm{psi}$ W - width of key, in

SOIL, WATER, PLANT RELATIONS

Porosity $\mathrm{P}=\mathrm{V}_{\mathrm{v}} 100 / \mathrm{V}$	$\begin{aligned} & \mathrm{P} \text { - porosity, } \% \\ & \mathrm{~V}_{\mathrm{v}} \text { - volume of voids, } \mathrm{cm}^{3} \\ & \mathrm{~V} \text { - total volume of soil column, } \mathrm{cm}^{3} \end{aligned}$
Void Ratio $\mathrm{VR}=\mathrm{V}_{\mathrm{V}} / \mathrm{V}_{\mathrm{s}}$	VR - void ratio V_{v} - volume of voids, cm^{3} V_{s} - volume of solid, cm^{3}
Degree of Saturation $\mathrm{DS}=\mathrm{V}_{\mathrm{w}} / \mathrm{V}_{\mathrm{v}}$	DS - degree of saturation V_{w} - volume of water, cm^{3} V_{v} - volume of voids, cm^{3}
Specific Gravity $\gamma_{\mathrm{s}}=\mathrm{W}_{\mathrm{sc}} / \mathrm{W}_{\mathrm{w}}$	γ_{s} - specific gravity of entire soil column $\mathrm{W}_{\text {sc }}$ - unit weight of entire soil column, g / cc W_{w} - unit weight of water, g / cc
Soil Moisture Content by Volume Basis $\mathrm{P}_{\mathrm{v}}=\mathrm{V}_{\mathrm{w}} 100 / \mathrm{Vt}$	P_{v} - moisture content by volume, $\%$ V_{w} - volume of water, cm^{3} V_{t} - total volume of soil sample, cm^{3}
Soil Moisture Content by Volume Basis $\mathrm{P}_{\mathrm{v}}=\mathrm{P}_{\mathrm{w}} \mathrm{~A}_{\mathrm{s}}$	P_{v} - moisture content volume basis, \% P_{w} - moisture content weight basis, \% A_{s} - apparent specific gravity

SOIL, WATER, PLANT RELATIONS

Depth of Water $\mathrm{d}=\mathrm{P}_{\mathrm{v}} \mathrm{D}_{\mathrm{rz}} / 100$	d - depth of water, mm P_{v} - moisture content by volume, \% D_{rz} - depth of root zone, mm
Depth of Water $\mathrm{d}=\mathrm{P}_{\mathrm{w}} \mathrm{~A}_{\mathrm{s}} \mathrm{D}_{\mathrm{rz}} / 100$	d - depth of water, mm P_{w} - moisture content by weight, \% A_{s} - apparent specific gravity, decimal D_{rz} - depth of root zone, mm
Total Available Moisture $\mathrm{TAM}=\mathrm{FC}-\mathrm{PWP}$	TAM - total available moisture, \% FC - moisture content at filed capacity, \% PWP - moisture content at permanent wilting point, \%
Moisture Range $\mathrm{MR}=\mathrm{RAM}-\mathrm{TAM}$	MR - moisture range, \% RAM - readily available moisture, \% TAM - total available moisture, $\%$

SOIL AND WATER CONSERVATION ENGINEERING

General formula for water yields of wells $\mathrm{Q}=\frac{\pi \mathrm{K}\left(\mathrm{H}^{2}-\mathrm{h}^{2}\right)}{\log _{\mathrm{e}} \mathrm{R} / \mathrm{r}}$	Q - rate of flow, $\mathrm{ft}^{3} /$ day K - hydraulic conductivity H - height of the static water level above the bottom of water bearing formation, ft h - height of water level at the ell measured from the water bearing formation, ft R - radius of influence, ft R - radius of the well
Water yield of a confined and unconfined well $\mathrm{Q}=\frac{2(\pi) \mathrm{kt}\left(\mathrm{~h}_{\mathrm{c}}-\mathrm{h}_{\mathrm{w}}\right)}{2.3 \log _{10}\left(\mathrm{~T}_{\mathrm{e}} / \mathrm{T}_{\mathrm{w}}\right)}$	
Flow measurement $\mathrm{Q}=\mathrm{AV}$	$\begin{aligned} & \mathrm{Q} \text { - discharge, } \mathrm{m}^{3} / \mathrm{sec} \\ & \mathrm{~A} \text { - cross sectional area of water, } \mathrm{m}^{2} \\ & \mathrm{~V} \text { - mean velocity of water, } \mathrm{m} / \mathrm{sec} \end{aligned}$
Average stream discharge $\mathrm{Q}_{\mathrm{ave}}=2 / 3\left(\mathrm{~A}_{\mathrm{ave}}\right)\left(\mathrm{V}_{\mathrm{ave}}\right)$	$\mathrm{Q}_{\mathrm{ave}}$ - average discharge, $\mathrm{m}^{3} / \mathrm{sec}$ $\mathrm{A}_{\text {ave }}$ - average stream cross-sectional area, m^{2} $\mathrm{V}_{\text {ave }}$ - maximum stream velocity, $\mathrm{m} / \mathrm{sec}$
Weirs and orifices $\mathrm{Q}=\mathrm{CL} \mathrm{~h}^{\mathrm{m}}$	Q - discharge C - coefficient dependent on the nature of the crest and approach condition L - length of crest h^{m} - head of the crest, and the exponent " m " is dependent upon the shape of the weir opening

SOIL AND WATER CONSERVATION ENGINEERING

Orifice under head $\mathrm{Q}=\mathrm{CA} \sqrt{ } 2 \mathrm{gh}$	$\begin{aligned} & \mathrm{Q} \text { - discharge, } \mathrm{m}^{3} / \mathrm{sec} \\ & \mathrm{~A}-\text { cross-sectional area of the orifice } \\ & \mathrm{g}-32.2 \mathrm{ft} / \mathrm{sec}^{2} \\ & \mathrm{~h} \text { - height (depth) of water from surface down } \\ & \text { to the orifice area } \end{aligned}$
Submerged orifice $\mathrm{q}=0.61 \mathrm{~A} \sqrt{ } 2 \mathrm{gh}$	$\begin{aligned} & \mathrm{q}-\text { discharge, } \mathrm{m}^{3} / \mathrm{sec} \\ & \mathrm{~A}-\text { cross-sectional area of the orifice } \\ & \mathrm{g}-32.2 \mathrm{ft} / \mathrm{sec}^{2} \\ & \mathrm{~h}-\text { depth of water } \end{aligned}$
Rectangular weir $\begin{aligned} & \mathrm{Q}=2 \mathrm{CLh} \sqrt{ } 2 \mathrm{gh} \\ & \mathrm{Q}=2 \mathrm{CLh}^{3 / 2} \mathrm{gh} \end{aligned}$	$\begin{aligned} & \mathrm{Q} \text { - discharge, } \mathrm{m}^{3} / \mathrm{sec} \\ & \mathrm{C} \text { - coefficient of roughness } \\ & \mathrm{L} \text { - } \\ & \mathrm{h} \text { - depth of water } \\ & \mathrm{g}-32.2 \mathrm{ft} / \mathrm{sec}^{2} \end{aligned}$
Partly-filled orifice $\mathrm{Q}=2 \mathrm{hL}$	$\begin{aligned} & \mathrm{Q} \text { - discharge, } \mathrm{m}^{3} / \mathrm{sec} \\ & \mathrm{~h} \text { - depth of water } \end{aligned}$
Trapezoidal weir $\mathrm{Q}=2.49 \mathrm{H}^{5 / 2}$	
Triangular notch weir $\mathrm{Q}=2.49 \mathrm{H}^{5 / 2}$	
Velocity formula $\mathrm{V}=\sqrt{ } 2 \mathrm{gh}$	$\begin{aligned} & \hline \mathrm{V} \text { - average velocity, } \mathrm{ft} / \mathrm{sec} \\ & \mathrm{~g} \text { - acceleration due to gravity } \\ & \text { h - depth of water (feet) or pressure head } \\ & \hline \end{aligned}$

SOIL AND WATER CONSERVATION ENGINEERING

Manning velocity equation $\mathrm{V}=1.486 / \mathrm{nR}^{2 / 3} \mathrm{~S}^{1 / 2}$	V - velocity, ft/sec n - roughness coefficient R - hydraulic radius of the channel, m S - slope/gradient of the channel
Chezy velocity formula $V=C \sqrt{ } R \times S$	C - coefficient of roughness R - hydraulic radius S - slope of water surface, gradient or piezometric head line
Best hydraulic radius croo-section $\mathrm{b}=2 \mathrm{~d} \tan \theta / 2$	b - bottom width of the channel d - depth of water flow θ - side slope of the channel
Water floe for vertical pipe $\mathrm{Q}=\frac{\mathrm{K} \mathrm{D}^{2} \mathrm{H}^{1 / 2}}{287}$	Q - discharge, li/sec D - inside pipe diameter, mm H - vertical rise of water jet, m k - discharge coefficient varying from: 0.87 for height of 75 mm to $100 \mathrm{~mm}, 0.97$ for height of 0.3 m to 0.6 m in pipe of 50 to 200 mm in diameter
Flow of water in a horizontallyinstalled pipe $\mathrm{Q}=\frac{[3.6 \times \mathrm{Ax} \mathrm{X}]}{\sqrt{ } \mathrm{Y}}$	Q - discharge, gal/min A - cross-sectional area at the end of the pipe, in^{2} D - pipe diameter, ft X - coordinates of the point on the surface measures in inches parallel to the pipe Y - vertical coordinate, ft

SOIL AND WATER CONSERVATION ENGINEERING

Water flow in siphon tubes and pipes $\mathrm{Q}=0.65 \mathrm{~A} \sqrt{ } 2 \mathrm{gh}$	Q - siphon discharge, gal/min A - cross-sectional area of the siphon tube, ft^{2} h - suction head, ft
Maximum discharge/flow in furrows $\mathrm{Q}=10 / \mathrm{S}$	Q - maximum non-erosive stream, gal/min S - slope/gradient of the land/furrow, \%
Length of furrows $\mathrm{L}=\frac{1,000}{(\mathrm{I}-\mathrm{A}) \mathrm{WS}}$	L - safe length of furrow, ft I - rainfall intensity, $\mathrm{in} / \mathrm{hr}$ A - absorption or infiltration rate of soil, in/hr W - furrow spacing, ft S - slope/gradient of furrow, \%
Intake rate of soil $\mathrm{I}=\mathrm{Ktn}$	I - intake rate of soil t - time rate that water is on the surface of the soil K - intake rate intercept at unit time n - slope of the line (vertical scaled distance divided by the horizontal scaled distance
Design parameters/formulas in border irrigation a) volume of water $\mathrm{V}_{\mathrm{t}}=\frac{\mathrm{W}\left[\mathrm{C}_{1} \mathrm{D}_{0}+\mathrm{E}_{1}\right]}{\mathrm{X}_{1}}$	V_{t} - volume of water on the surface of the soil time t_{1} W -width of the border check D_{0} - depth of water t the upper end C_{1} - shape factor E - depth correction factor E_{1} - distance leading to edge in time t_{1}

SOIL AND WATER CONSERVATION ENGINEERING

Advance distance $x=\frac{q t}{\left[k_{1} D_{0}+k_{2} y_{0}\right]}$	x - distance to the leading edge q - unit stream size or flow per unit width of border strip t - total time of flow D_{0} - depth of water at upper end y_{0} - cumulative intake at the upper end k_{1} - surface storage coefficient varying from 0.5 to less than 1.0
Percolation losses $\mathrm{P}=\frac{(\mathrm{R}+1)^{\mathrm{n}+1}-\mathrm{R}^{\mathrm{n}+1}}{(\mathrm{R}+1)^{\mathrm{n}+1}+\mathrm{R}^{\mathrm{n}+1}} \times 100$	P - percent water intake which is lost by deep percolation below root zone R - a time ratio n - the exponent of t in the intake equation
Unit border stream size $\mathrm{Q}_{\mathrm{u}}=1 / \mathrm{E}_{\mathrm{a}}\left[\mathrm{t}_{\mathrm{cr}} /\left(\mathrm{t}_{\mathrm{tcr}}-\mathrm{t}_{\mathrm{r}}\right)\right]\left[\mathrm{D} / 7.2 \mathrm{t}_{\mathrm{cr}}\right]$	Q_{u} - unit stream, $\mathrm{ft}^{3} / \mathrm{sec}$ E_{a} - water application efficiency expressed as a decimal, $1.0-\mathrm{P}$ where P is the percolation loss in decimal t_{cr} - time in minutes required for infiltration of D inches of water t_{r} - recession lag time in minutes (from the time the stream is cut of average area irrigated per set)
Maximum-stream size per foot width of border strip $\mathrm{q}_{\mathrm{mx}}=0.06 \mathrm{~S}^{0.75}$	q_{mx} - maximum stream in cubic feet per second per foot width of border strip S - lope/gradient, \%
Minimum stream size per foot width of strip $\mathrm{Q}_{\min }=0.004 \mathrm{~S}^{0.5}$	$\mathrm{q}_{\text {min }}$ - maximum stream in cubic feet per second per foot width of border strip S - slope/gradient, \%

SOIL AND WATER CONSERVATION ENGINEERING

Water conveyance efficiency $E_{c}=\frac{W_{f}}{W_{e}} \times 100$	E_{c} - water conveyance efficiency W_{t} - water delivered to the farm W_{e} - water delivered from the river or reservoir
Water application efficiency $E_{a}=\frac{W_{s}}{W_{f}} \times 100$	E_{u} - water application efficiency W_{s} - water stored in the soil root zone during irrigation W_{f} - water delivered to the farm
Water use efficiency $\mathrm{E}_{\mathrm{u}}=\frac{\mathrm{W}_{\mathrm{u}}}{\mathrm{~W}_{\mathrm{d}}} \times 100$	E_{u} - water use efficiency W_{u} - water beneficially used W_{d} - water delivered
Water storage efficiency $\mathrm{E}_{\mathrm{a}}=\frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{~W}_{\mathrm{n}}} \times 100$	E_{a} - water use efficiency W_{s} - water stored in the root zone during irrigation W_{n} - water needed in the root zone prior to irrigation
Water distribution efficiency $E_{d}=100[1-(y / d)]$	E_{d} - water distribution efficiency y - average numerical deviation in depth of water stored from average depth stored during irrigation d - average depth of water stored during irrigation

SOIL AND WATER CONSERVATION ENGINEERING

Consumptive use efficiency	E_{cu} - consumptive use efficiency W_{cu} - normal consumptive use of water W_{d} - net amount of water depleted from root-zone soil
W_{d}	
Rainfall intensity	I - rainfall intensity K, x and n - constants for a given geographic location t - duration of storm in minute T - return period
KT^{x}	
$=\frac{}{t^{n}}$	
Return period and probability of occurrence 100	t - return period in years P- probability in percent that an observed event in a given year is equal to or greater than a given event
100	
P	
Thiesen method of rainfall determination	P - representative average rainfall in a watershed of area A $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}=$ rainfall depth I the polygon having areas $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ within the watershed
$\mathrm{P}=$ A	
Runoff rates-Rational method	q - the design peak runoff rate, $\mathrm{m}^{3} / \mathrm{sec}$ C - runoff coefficient i - rainfall intensity in $\mathrm{mm} /$ hour for the design return period and for a duration equal to the "time of concentration" of the watershed A - watershed area, ha
$\mathrm{q}=0.0028 \mathrm{C} \mathrm{I} \mathrm{A}$	

SOIL AND WATER CONSERVATION ENGINEERING

Time of concentration $\mathrm{T}_{\mathrm{c}}=0.0195 \mathrm{~L} 0.77 \mathrm{~S}_{\mathrm{g}}{ }^{0.385}$	Tc - time of concentration, min L - maximum length of flow, m S_{g}-the watershed gradient in m / m or the difference in elevation between outlet and the most remote point divided by the length, L
Flood runoff (Chow method) $q=K A^{x}$	q - magnitude of the peak runoff ($\mathrm{L}^{3} / \mathrm{T}$) k - coefficient depended on various characteristics of the watershed A - watershed area, L^{2}
Runoff volume (US/SCS method) $Q=\frac{(I-0.2 S)^{2}}{1+0.8 S}$	Q - direct runoff depth, mm I - storm rainfall, mm S - maximum potential between rainfall and runoff in mm , starting at the time the storm begins
Required pump capacity for irrigation $\mathrm{Q}=453 \frac{\mathrm{Ad}}{\mathrm{FH}}$	Q - discharge, gpm A - design area, acres D - gross depth of irrigation, in. H - average umber of hours of operation per day F - number of days permitted for irrigation, days
Return period (General formula) $\mathrm{T}=100 / \mathrm{P}$	T - return period in years P - probability in percent that n observed event in a given year is equal to or greater than a given event

SOIL AND WATER CONSERVATION ENGINEERING

Return period (Gumbel's formula)	T - return period in years N - total number of statistical events
	magnitude
m	
Dimensional flow of water (Darcy equation) $\mathrm{q}=\mathrm{KhA} / \mathrm{L}$	q - flow ret ($\mathrm{L}^{3} / \mathrm{T}$) K - hydraulic conductivity f the flow of medium (L / T) h - head or potential causing flow (L) A - cross-sectional area of flow (L^{2}) L - length of the flow path (L)
Terrace spacing $\text { V.I. }=\mathrm{X} s+\mathrm{Y}$	V.I. - vertical interval between corresponding points of consecutive terraces or from the top of the slope to the bottom of first terrace, m X - constant for geographical location Y - constant for soil erodability and cover condition during critical erosion periods $-0.3,0.6$, or 1.2 with the low value for highly erodable soils with no surface residue and the high value for erosion-resistant soils with conservation tillage s - average land slope above the terrace in percent

SOIL AND WATER CONSERVATION ENGINEERING

Terrace cross section $\mathrm{c}+\mathrm{f}=\mathrm{h}+\mathrm{sW}$	$\begin{aligned} & \hline \mathrm{c}-\operatorname{cut}(\mathrm{L}) \\ & \mathrm{f} \text { - fill (L) } \\ & \text { h - depth of channel including freeboard (L) } \\ & \text { s - original land slope (L/L) } \\ & \text { W - width of side slope (L) } \\ & \hline \end{aligned}$
Drop spillway capacity (free flow/ no submerged) $\mathrm{q}=0.55 \mathrm{C} \mathrm{~L} \mathrm{~h}^{3 / 2}$	q - discharge in $\mathrm{m}^{3} / \mathrm{s}$ C - weir coefficient L - weir length, m h - depth of flow over the crest, m
Culvert capacity (flowing full condition) $Q=\frac{a \sqrt{ } 2 \mathrm{gH}}{\sqrt{1+K_{e}+K_{c} L}}$	q - flow capacity ($\mathrm{L}^{3} / \mathrm{T}$) a - conduit cross-sectional area (L^{2}) H - head causing flow (L) K_{e} - entrance loss coefficient K_{b} - loss coefficient for bends in culvert
Top width of dams (those exceeding 3.5 meters) $\mathrm{W}=0.4 \mathrm{H}+1$	W - top width of dam, m H - maximum height of embankment, m
Wave height in dams $\mathrm{h}=0.014\left(\mathrm{D}_{\mathrm{f}}\right)^{1 / 2}$	h - height of the wave from trough to crest under maximum wind velocity, m D_{f} - fetch or exposure, m
Compaction and settlement - volume relationship $\mathrm{V}=\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{e}}$	$\begin{aligned} & \mathrm{V} \text { - total in-place volume }\left(\mathrm{L}^{3}\right) \\ & \mathrm{V}_{\mathrm{s}}-\text { volume of solids particles }\left(\mathrm{L}^{3}\right) \\ & \mathrm{V}_{\mathrm{e}}-\text { volume of voids, either air or water }\left(\mathrm{L}^{3}\right) \end{aligned}$

SOIL AND WATER CONSERVATION ENGINEERING

Tractive force (on the bottom of open channel) $\mathrm{T}=\mathrm{wdsK}$	T - tractive force ($\mathrm{F} / \mathrm{L}^{2}$) w - unit weight of water $\left(9800 \mathrm{~N} / \mathrm{m}^{3}\right)\left(\mathrm{F} / \mathrm{L}^{3}\right)$ d - depth of flow (L) s - slope (hydraulic gradient) (L/L) K - ratio of the tractive force for noncohesive material necessary to start motion of sloping side of a channel to that required to start motion for the same on a level suface
Drainage ditches design capacity $\mathrm{q}=0.013 \mathrm{CM}^{0.833}$	$\begin{aligned} & \mathrm{q}-\text { runoff, } \mathrm{m}^{3} \\ & \mathrm{C} \text { - constnt } \\ & \mathrm{M} \text { - watershed area, } \mathrm{km}^{2} \end{aligned}$
Drainage and seepage discharge (from irigted lands in rid regions) - ASAE 1988 $\mathrm{Dc}=\frac{\mathrm{I}(\mathrm{P}+\mathrm{S})}{1007}$	D - drainage coefficient lands in rid regions, $\mathrm{mm} /$ day P - deep percolation from percolation and bsed on the maximum area to be irrigated at the same time in percent of irrigation application S - field canal seepage los in percent I - irrigation depth of application, days
Discharge equation in pipe drains (Pillsbury, 1985) $\mathrm{Q}=1.56 \mathrm{~A}^{0.75}$	Q - maximum flow, L/s A - drained area, ha
Drain size $\mathrm{d}=52.2\left(\mathrm{D}_{\mathrm{c}} \times \mathrm{Axn}\right)^{0.375} \mathrm{~s}^{-0.1875}$	d - inside diameter, mm D_{c} - drainage coefficient, mm/day A - drainage area, ha n - roughness coefficient s - drain slope, m / m

SOIL AND WATER CONSERVATION ENGINEERING

Load formula for ditch conduits (drainage pipes) $\mathrm{W}_{\mathrm{c}}=\mathrm{C}_{\mathrm{d}} \mathrm{~W} \mathrm{~B}_{\mathrm{d}}^{2}$	W_{c} - total load on the conduit per unit length (F / L) $\mathrm{C}_{\mathrm{d}}-$ load coefficient for ditch conduits w - unit weight of fill material, ($\mathrm{F} / \mathrm{L}^{3}$) B_{d} - width of ditch t top of conduit (L)
Conduit formula (for wide ditches) $\mathrm{W}_{\mathrm{c}}=\mathrm{C}_{\mathrm{c}} \mathrm{wB}_{\mathrm{w}}{ }^{2}$	$\mathrm{C}_{\mathrm{c}}-$ load coefficient for projecting conduits B_{c} - outside diameter of the conduit (L)
Soils loads on flexible pipes $\mathrm{W}_{\mathrm{c}}=\mathrm{C}_{\mathrm{d}} \mathrm{WB} \mathrm{~B}_{\mathrm{c}} \mathrm{~B}_{\mathrm{d}}$	$\mathrm{W}_{\mathrm{c}}-$ total load on the conduit per unit length (F / L) C_{d} - load coefficient for ditch conduits w - unit weight of fill material, ($\mathrm{F} / \mathrm{L}^{3}$) B_{c} - outside diameter of the conduit (L) B_{d} - width of ditch at the top of conduit (L)
Volume storage of reservoir $\mathrm{V}=\mathrm{d} / 2\left(\mathrm{~A}_{1}+\mathrm{A}_{2}\right)$	$\begin{aligned} & \mathrm{V} \text { - volume of storage, }\left(\mathrm{L}^{3}\right) \\ & \mathrm{d} \text { - distance between end areas }(\mathrm{L}) \\ & \mathrm{A}_{1} \text { and } \mathrm{A}_{2} \text { - end area }\left(\mathrm{L}^{2}\right) \\ & \hline \end{aligned}$
Earthwork volumes $\mathrm{V}_{\mathrm{c}}=\frac{\mathrm{L}^{2}\left(\sum \mathrm{C}\right)^{2}}{4\left(\sum \mathrm{C}+\sum \mathrm{F}\right)}$	V_{c} - volume of cut (L^{3}) L - grid spacing (L) C - cut on the grid corners (L) F - fill on the grid corners (L)

SOIL AND WATER CONSERVATION ENGINEERING

Prismoidal formula $\mathrm{V}=\mathrm{d} / 6\left(\mathrm{~A}_{1}+4 \mathrm{~A}_{\mathrm{m}}+\mathrm{A}_{2}\right)$	A_{m} - middle are halfway between the end areas
Storage volume (when slopes in the reservoir area is given) $\mathrm{V}=\mathrm{A}_{0} \mathrm{~d}+\frac{177 \mathrm{~d}^{2} \mathrm{~A}_{0}^{1 / 2}}{\mathrm{~S}}$	A_{0} - area at spillway crest (L^{2}) d - depth of water above spillway crest (L) S - average slope of reservoir sides and banks, through range of $\mathbf{d}, \%$
Sprinkler capacity $\text { Capacity }=\frac{\mathrm{S}_{1} \mathrm{~S}_{\mathrm{m}} \mathrm{X} \text { application rate }}{96.3}$	S_{1} - spacing along lateral, ft S_{m} - spacing between laterals along main in feet
Application rate $I=\frac{V_{g}}{T_{\mathrm{sp}}}=\frac{1000 \times q}{S_{\mathrm{m}} \times S_{\mathrm{e}}}$	I - application rate, $\mathrm{mm} / \mathrm{hr}$ $\mathrm{V}_{\mathrm{g}}-$ gross amount of water applied per irrigation, mm $\mathrm{T}_{\text {sp }}$ - time of sprinkling, hours q - sprinkler discharge, $\mathrm{m}^{3} / \mathrm{hr}$ S_{m} - spacing between adjacent laterals, m S_{e} - sprinkler spacing along laterals, m
Irrigation interval $\mathrm{T}=\frac{\mathrm{V}}{\mathrm{C}_{\mathrm{u}}}$	T - irrigation interval, day V - net amount of water in single irrigation not to exceed the oil's water holding capacity, mm C_{u} - consumptive use, mm/day

SOIL AND WATER CONSERVATION ENGINEERING

Number of irrigation days (within irrigation interval) $\mathrm{T}=\mathrm{T}_{\mathrm{k}} \times \mathrm{T}_{\mathrm{e}}$	T - number of irrigation days within the irrigation interval, days T_{e} - number of days moving the systems and no ater applied
Gross amount of water per application $\mathrm{V}_{\mathrm{g}}=\mathrm{V} / \mathrm{E}_{\mathrm{a}}$	V_{g} - gros amount of water applied per irrigation V - net amount of water in single irrigation not to exceed the holding capacity of soil E_{a} - irrigation efficiency
Sprinkler (nozzle) discharge $\mathrm{q}=29.85 \times \mathrm{Cx} \mathrm{~d}_{\mathrm{n}}^{2} \times \mathrm{P}^{1 / 2}$	q - sprinkler or nozzle discharge, gpm d_{n} - diameter of the nozzle orifice, in P - pressure at the nozzle, psi C - coefficient of discharge - 0.95 to 0.98 for well-designed nozzles - 0.80 for larger nozzles
Average area irrigated daily $\mathrm{A}_{\mathrm{d}}=\mathrm{A} / \mathrm{T}_{\mathrm{n}}$	A_{d} - average area irrigated daily, ha A - total area of the field, ha T_{n} - number of irrigation days within the irrigation interval, days
Number of times the system is moved per day $\mathrm{x}=\text { integer }\left[24_{\mathrm{Tsp}}\right]$	x - number of times the system is moved per day T_{sp} - time of sprinkling, hrs

SOIL AND WATER CONSERVATION ENGINEERING

Average areas irrigated per set $\mathrm{A}_{\mathrm{s}}=\mathrm{A}_{\mathrm{d}} / \mathrm{x}$	$\mathrm{A}_{\mathrm{s}}-$ average area irrigated per set, ha $\mathrm{A}_{\mathrm{d}}-$ average areas irrigated dily, ha x - number of times the system is moved per ady
Area irrigated by a single lateral $A_{1}=\frac{L_{e} \times S_{m}}{1000}$	A_{1} - area irrigated by a single lateral, ha L_{e} - effective length of lateral, m $\mathrm{S}_{\mathrm{m}}-$ spacing between adjacent laterals, m
Effective length of lateral $\mathrm{L}_{1}=\mathrm{N}_{\mathrm{sl}} \times \mathrm{S}_{1}$	L_{1} - effective length of laterals, m $\mathrm{N}_{\mathrm{sl}}-$ number of sprinkler along lateral S_{1} - spacing of sprinkler long lateral, m
Sprinkler system capacity $\mathrm{Q}=\mathrm{A}_{\mathrm{s}} \times \mathrm{I}$	Q - system capacity A_{s} - average area irrigated per set I - application rate
Density of sprinkler per hectare $\mathrm{N}_{\mathrm{sp}}=\frac{10,000}{\mathrm{~S}_{\mathrm{m}} \times \mathrm{S}_{\mathrm{l}}}$	N_{sp} - density of sprinkler per hectare $\mathrm{S}_{\mathrm{m}}-$ spacing between adjacent laterals, m $\mathrm{S}_{1}-$ sprinkler spacing along laterals, m

SOIL AND WATER CONSERVATION ENGINEERING

Number of sprinkler per set $\mathrm{N}_{\mathrm{set}}=\mathrm{A}_{\mathrm{s}} \times \mathrm{N}_{\mathrm{sp}}$	N_{sp} - number of sprinkler per set A_{s} - average area irrigated per set N_{sp} - density of sprinklers per hectare
Number of lines in a single set $\mathrm{N}_{\mathrm{ls}}=\mathrm{A}_{\mathrm{s} /} / \mathrm{A}_{\mathrm{l}}$	N_{ls} - number of lines/set A_{s} - average area irrigated per set A_{1} - area irrigated by a single lateral
Uniformity of distribution $\mathrm{C}_{\mathrm{u}}=100\left[1-\frac{\sum 1 \times \mathrm{m}-\mathrm{mx1}}{\mathrm{mxn}}\right]$	$\sum \mathrm{lm}-\mathrm{ml}$ - sum of the obsolete deviation of individual collector reading from the mean m - mean of all collector values m_{1} - individual reading of each collector n - number of collectors

SOLAR THERMAL SYSTEM

Direct Solar Radiation in an Inclined Surface $\mathrm{Q}_{\mathrm{i}}=\mathrm{Q}_{0} \mathrm{DA} \cos \alpha$	Q_{i} - Direct solar radiation, kW Q_{o} - solar constant, $\mathrm{kW} / \mathrm{m}^{2}$ A - absorber surface area, m^{2} D - transmission factor, $0.06-0.82$ α - angle between a line perpendicular to the surface and the direction of radiation
Energy Requirement for Water Space Heating $\mathrm{Q}_{\mathrm{n}}=\mathrm{mC}_{\mathrm{p}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$	Q_{n} - energy needed, $\mathrm{kJ} / \mathrm{hr}$ m - mass of water needed to be heated per hour, kg $\mathrm{C}_{\mathrm{p}}-$ specific heat of water, $4.18 \mathrm{~kJ} / \mathrm{kg}-\mathrm{C}$ T_{2} - final temperature of warm water, C T_{1} - initial temperature of water, C
$\begin{aligned} & \text { Collector Area } \\ & \qquad \begin{array}{c} \mathrm{A}_{\mathrm{c}}=--------\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \\ \eta \mathrm{Q}_{\mathrm{o}} \cos \alpha \end{array} \end{aligned}$	A_{c}-collector area, m^{2} m - mass of water , kg C_{p} - specific heat of water, $4.18 \mathrm{~kJ} / \mathrm{kg}-\mathrm{C}$ T_{2} - final temperature of warm water, C T_{1} - initial temperature of water, C η - overall efficiency of the solar plant Q_{o} - average global radiation density α - angle between a line perpendicular to the surface and the direction

SOLAR THERMAL SYSTEM

Heat Gain in the Solar Collector $\mathrm{Q}_{\mathrm{g}}=\eta \mathrm{IR}$	```\(\mathrm{Q}_{\mathrm{g}}\) - heat gain from the solar collector, \(\mathrm{W} / \mathrm{m}^{2}\) \(\eta\) - collector efficiency, \% IR - Insulation rate, W/m \({ }^{2}\)```
Thermal Efficiency of flat Plate Collector $\begin{array}{r} \mathrm{TE}=\alpha \tau \cos \beta-\mu-\cdots------ \\ \mathrm{T}_{\mathrm{g}}-\mathrm{T}_{\mathrm{u}} \end{array}$	TE - thermal efficiency, \% α - heat transfer coefficient of the absorber material τ - transmissivity of the covering surface β - angel between a line perpendicular to the surface and the direction of radiation, deg μ - coefficient for losses through convention, conduction, and insulation T_{a} - average temp of the absober, C T_{u} - ambient air temperature, C Q_{g} - Global radiation intensity, $\mathrm{kW} / \mathrm{m}^{2}$

SOLID GEOMETRY

Area of Square $\mathrm{A}_{\mathrm{s}}=\mathrm{S}^{2}$	$\begin{aligned} & \mathrm{A}_{\mathrm{s}} \text { - area of square, } \mathrm{m}^{2} \\ & \mathrm{~S} \text { - side, } \mathrm{m} \end{aligned}$
Area of Rectangle $\mathrm{A}_{\mathrm{r}}=\mathrm{W} \mathrm{~L}$	A_{r} - area of rectangle, m^{2} W - width, m L - length, m
Area of Triangle $\mathrm{A}_{\mathrm{t}}=[\mathrm{B} \mathrm{H}] / 2$	$\begin{aligned} & A_{t} \text { - area of triangle, } m^{2} \\ & B-\text { base, } m \\ & H \text { - height, } m \end{aligned}$
Area of Parallelogram $\mathrm{A}_{\mathrm{p}}=\mathrm{BH}$	$\begin{aligned} & A_{p} \text { - area of parallelogram, } m^{2} \\ & B \text { - base, } m \\ & H \text { - height, } m \end{aligned}$
Area of Rhombus $\mathrm{A}_{\mathrm{rm}}=\mathrm{BH}$	A_{rm} - area of rhombus, m^{2} B - base, m H - height, m
Area of Trapezoid $\mathrm{A}_{\mathrm{tr}}=\left[\mathrm{B}_{1}+\mathrm{B}_{2}\right] \mathrm{H} / 2$	$\begin{aligned} & \hline A_{\text {tr }} \text { - area of trapezoid, } m^{2} \\ & B_{1} \text { - upper base, } m \\ & B_{2}-\text { lower base, } m \\ & H \text { - height, } m \\ & \hline \end{aligned}$
Area of Circle $\mathrm{A}_{\mathrm{c}}=[\pi / 4] \mathrm{D}^{2}$	$\begin{aligned} & \mathrm{A}_{\mathrm{c}}-\text { area of circle, } \mathrm{m}^{2} \\ & \mathrm{D} \text { - diameter, } \mathrm{m} \end{aligned}$
Surface Area of Cone $\mathrm{SA}=\pi \mathrm{RS}\left[\mathrm{R}^{2}+\mathrm{H}^{2}\right]^{0.5}$	SA - surface area, m R - radius, m H - height, m
Surface Area of Conical Frustum $\mathrm{SA}=\pi(\mathrm{R}+\mathrm{R} 2)\left[(\mathrm{R} 1-\mathrm{R} 2)^{2}+\mathrm{H}^{2}\right]^{0.5}$	SA - surface area, m R1 - top radius, m R2 - bottom radius, m H - height, m
Surface Area of Sphere $\mathrm{SA}=4 \pi \mathrm{R}^{2}$	SA - surface area, m R - radius, m

SOLID GEOMETRY

Area of Ellipse $\mathrm{A}_{\mathrm{e}}=\pi \mathrm{R}_{1} \mathrm{R}_{2}$	A_{e} - area of ellipse, m^{2} R_{1} - smaller radius, m R_{2} - bigger radius, m
Volume of Cube $\mathrm{V}_{\mathrm{c}}=\mathrm{S}^{3}$	V_{c} - volume of cube, m^{3} S - side, m
Volume of Rectangular Parallelepiped $\mathrm{V}_{\mathrm{p}}=\mathrm{L} W \mathrm{H}$	V_{p} - volume of parallelepiped, m^{3} L - length, m W - width, m H - height, m
Volume of Circular Cylinder $\mathrm{V}_{\mathrm{c}}=\left[\pi \mathrm{D}^{2} \mathrm{H}\right] / 4$	V_{c} - volume of circular cylinder, m^{3} D - diameter of cylinder, m H - height of cylinder, m
Volume of Cone $\mathrm{V}_{\mathrm{cn}}=\left[\pi \mathrm{R}^{2} \mathrm{H}\right] / 3$	V_{cn} - volume of cone, m^{3} R - radius of cone, m H - height of cone, m
Volume of Frustum of Right Circular Cone $\mathrm{V}_{\mathrm{fc}}=[\pi \mathrm{H} / 2]\left[\mathrm{r}^{2}+\mathrm{R}^{2}+\mathrm{rR}\right]$	V_{fc} - volume of frustum of cone, m^{3} R - larger radius of frustum, m r - smaller radius of frustum, m H - height of frustum, m
Volume of Pyramid $\mathrm{Vp}=1 / 3 \mathrm{~L} \mathrm{~W} \mathrm{H}$	Vp - volume of pyramid, m^{3} L - length of base, m W - width of base, m H - height, m
Volume of Sphere $\mathrm{V}_{\mathrm{s}}=4 / 3 \pi \mathrm{R}^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}-\text { volume of sphere, } \mathrm{m}^{3} \\ & \mathrm{R} \text { - radius, } \mathrm{m} \end{aligned}$

SPRAYER

Application Rate $\mathrm{AR}=\frac{10000 \mathrm{Q}}{\mathrm{~S} \mathrm{~V}}$	AR - application rate, liters per hectare Q - delivery, lpm S - swath, m V - travel speed, $\mathrm{m} / \mathrm{min}$
Sprayer Field Capacity $\mathrm{FC}_{\mathrm{s}}=\frac{\mathrm{S} \mathrm{~V}}{10}$	FC_{s} - theoretical field capacity, ha/hr S - swath, m V - travel speed, kph
Actual Sprayer Field Capacity $\mathrm{FC}_{\mathrm{a}}=\mathrm{A}_{\mathrm{s}} / \mathrm{T}_{\mathrm{s}}$	FC_{a} - actual field capacity, ha/hr A_{s} - area sprayed, hectares T_{s} - time spent, hr
Boom Discharge per Minute $\mathrm{Q}_{\mathrm{b}}=\mathrm{Q}_{\mathrm{n}} \mathrm{~N}_{\mathrm{n}}$	Q_{b} - boom discharge, lpm Q_{n} - nozzle discharge, lpm N_{n} - number of nozzle
Piston Displacement $D_{p}=\frac{\pi d^{2} L}{4(1000)}$	D_{p} - piston displacement, liters d - diameter of the cylinder, cm L - length of actual piston travel, cm

SPRAYER

Volumetric Efficiency $\xi_{\mathrm{v}}=\left(\mathrm{V}_{\mathrm{a}} / \mathrm{D}_{\mathrm{p}}\right) 100$	ξ_{v} - volumetric efficiency, \% V_{a} - actual volume discharge, liters D_{p} - piston displacement, liters
Spraying Speed $V=\frac{167 Q_{\mathrm{d}}}{\mathrm{~S} Q}$	V - travelling speed, m / s Q_{d} - total discharge quantity of boom sprayer, lpm S - spraying width, m Q - spraying quantity, liters per hectare
Number of Sprayer Load per Hectare $\mathrm{L}=\mathrm{Q} / \mathrm{C}_{\mathrm{t}}$	L - number of loads per hectare Q - application rate, liters per hectare C_{t} - tank capacity, liters per load

SPRINKLER IRRIGATION

Irrigation Interval $\begin{aligned} & \mathrm{I}_{\mathrm{i}}=\mathrm{V} / \mathrm{CU} \\ & \mathrm{I}_{\mathrm{i}}=\mathrm{T}_{\mathrm{ii}} \mathrm{~T}_{\mathrm{ms}} \end{aligned}$	I_{i} - irrigation interval, days V - net amount of water in single irrigation not to exceed the soil water holding capacity, mm CU - consumptive use, $\mathrm{mm} /$ day T_{ii} - number of irrigation days within the irrigation interval, days T_{ms} - number of days of moving the system and no water applied, days
Gross Amount of Water Per Irrigation $\mathrm{V}_{\mathrm{g}}=\mathrm{V} / \xi_{\mathrm{i}}$	V_{g} - gross amount of water applied per irrigation, mm/day V - net amount of water applied in single irrigation not to exceed the soil's water holding capacity, mm/day ξ_{I} - irrigation efficiency, decimal
Application Rate $\begin{aligned} & \mathrm{I}=\mathrm{V}_{\mathrm{g}} / \mathrm{T}_{\mathrm{sp}} \\ & \mathrm{I}=1000\left[\mathrm{Q} /\left(\mathrm{S}_{\mathrm{m}} \mathrm{~S}_{\mathrm{l}}\right)\right] \end{aligned}$	I - application rate, $\mathrm{mm} / \mathrm{hr}$ $\mathrm{V}_{\mathrm{g}}-$ gross amount of water applied per irrigation, mm T_{sp} - time of sprinkling, hrs Q - sprinkler discharge, $\mathrm{m}^{3} / \mathrm{hr}$ S_{m} - sprinkler spacing between adjacent lateral, m $S_{1}-$ sprinkler spacing along laterals, m
Area Irrigated by a single Lateral $\mathrm{A}_{\mathrm{l}}=\left[\begin{array}{ll} \mathrm{L}_{\mathrm{e}} & \mathrm{~S}_{\mathrm{m}} \end{array}\right] / 10000$	A_{1} - area irrigated by a single lateral, ha L_{e} - effective length of lateral, m S_{m} - spacing between adjacent laterals, m

SPRINKLER IRRIGATION

Sprinkler Discharge $\mathrm{Q}_{\mathrm{s}}=30 \mathrm{CD}_{\mathrm{n}}{ }^{2} \mathrm{P}_{\mathrm{n}}{ }^{0.5}$	Q_{s} - sprinkler nozzle discharge, gpm C - coefficient of discharge, 0.95 to 0.98 for well designed small nozzle and 0.80 for larger nozzzle D_{n} - diameter of nozzle orifice, in. P_{n} - nozzle pressure, psi
Effective Length of Lateral $\mathrm{L}_{\mathrm{e}}=\mathrm{N}_{\mathrm{sl}} \mathrm{~S}_{\mathrm{l}}$	L_{e} - effective length of lateral, m N_{sl} - number of sprinkler along lateral $\mathrm{S}_{1}-$ spacing of sprinkler along lateral, m
System Capacity $\begin{aligned} & \mathrm{Q}_{\mathrm{s}}=\mathrm{A}_{\mathrm{s}} \mathrm{I} \\ & \mathrm{Q}_{\mathrm{s}}=[453 \mathrm{Ad}] /[\mathrm{F} \mathrm{H}] \end{aligned}$	Q_{s} - system capacity, ha-mm/day A_{s} - average area irrigated per set, ha I - application rate, mm/day Q_{s} - system capacity, gpm A - design area, acre d - gross depth of application, in F - time allowed for completion of one irrigation, days H - actual operating time, hr/day
Density of Sprinklers per Hectare $\mathrm{N}_{\mathrm{sp}}=10000 /\left[\mathrm{S}_{\mathrm{m}} \mathrm{~S}_{\mathrm{l}}\right]$	$\mathrm{N}_{\text {sp }}$ - density of sprinklers per hectare, units of sprinklers S_{m} - spacing between adjacent laterals, m S_{1} - spacing along laterals, m

STATISTICS

Arithmetic mean For small n: $\bar{X} \frac{\sum_{i=1}^{n} X_{i}}{n}$ for large n : $\begin{aligned} & \overline{\mathrm{x}}=\frac{\sum \mathrm{fx}}{\mathrm{n}} \\ & \overline{\mathrm{x}}=\overline{\mathrm{w}}+\mathrm{c} \overline{\mathrm{~d}} \\ & \overline{\mathrm{~d}}=\frac{\sum \mathrm{fd}}{\mathrm{n}} \end{aligned}$	$\overline{\mathrm{x}}$ - arithmetic mean n - number of observations $\bar{\omega}$ - guess mean or the value estimated to the nearest c - class size n - number of observations
Median $x=L+\frac{n / 2-f_{1}}{f_{2}}-C$	c - class size L - lower value of the class range where the median class is located n - number of observations f_{1} - cumulative frequency of the premedian class f_{2} - frequency of the median class
Mode $x=L=\frac{F-f_{p r}}{2 f-f_{p r}-f_{p o}}$	L - lower limit of the modal class F - frequency of the modal class f_{pr} - frequency of the premodal class f_{po} - frequency of the post modal class c - class size
Standard deviation For small n: $\mathrm{s}=\frac{\sqrt{\sum\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}}}{\mathrm{n}-1}$ For large n: $\mathrm{s}=\frac{\sqrt{\sum \mathrm{fx}^{2}-\left(\sum \mathrm{fx}\right)^{2} / \mathrm{n}}}{\mathrm{n}-1}$	s - standard deviation n - number of observations

STATISTICS

STATISTICS

Combination $\mathrm{nCr}=\frac{\mathrm{n}!}{(\mathrm{n}-\mathrm{r})!\mathrm{r}!}$	n - number of objects C - number of combination r - number of objects taken at a time nCr - number of combination of n objects taken r at a time
Sampling and Sampling Designs Sample size: $\mathrm{n}=\frac{\mathrm{Nxz}}{} \mathrm{z}^{2} \times(\mathrm{p} \times \mathrm{q}) \mathrm{Nx(Te)}^{2}+\left(\mathrm{z}^{2}+\mathrm{pq}\right)$	n - sample size N - population size $\mathrm{z}-\mathrm{z}$ value of the corresponding confined level adopted Te - tolerable or permissible error for the corresponding confidence level p - the proportion of the population decided to be the included portion q - the proportion of the population decided to be the included portion
Two Ways of Solving a Sample Size 1. Sample size which can satisfy prescribed margin of error of the plot mean. $\mathrm{n}=\frac{\left(\mathrm{z}_{\alpha}^{2}\right)\left(\mathrm{v}_{\mathrm{s}}\right)}{\mathrm{d}^{2}\left(\mathrm{x}^{2)}\right.}$ 2. Sample size which can satisfy a prescribed margin of error of the treatment mean. $\mathrm{n}=\frac{\left(\mathrm{z}_{\alpha}^{2}\right)\left(\mathrm{v}_{\mathrm{s}}\right)}{\mathrm{r}\left(\mathrm{D}^{2}\right)\left(\mathrm{x}^{2}\right)-\left(\mathrm{z}_{\alpha}^{2}\right) \mathrm{v}_{\mathrm{p}}}$	n - sample size $z_{\alpha}-$ value of the standardized normal variate corresponding to the level of significance α v_{s} - sampling variance x - arithmetic mean d - margin or error expressed as a fraction of the plot mean z_{α} - value of the standardized normal variate corresponding to the level of significance α v_{s} - sampling variance x - arithmetic mean r - number of replications D - prescribed margin of error expressed of the treatment mean v_{p}-size of the experimental error

TEMPERATURE

Centigrade to Farenheight $F=(9 / 5) C+32$	F - farenheight, deg F C - centigrade, $\operatorname{deg} \mathrm{C}$
Farenheight to Centigrade $C=(5 / 9) \quad F-32$	C - centigrade, deg C F - farenheight, deg F
Rankine to Centigrade $\mathrm{C}=(5 / 4) \mathrm{R}$	$\begin{aligned} & C \text { - centigrade, } \operatorname{deg} C \\ & R \text { - rankine, } \operatorname{deg} R \end{aligned}$
Centigrade to Rankine $\mathrm{R}=(4 / 5) \mathrm{C}$	$\begin{aligned} & \mathrm{R} \text { - rankine, } \operatorname{deg} \mathrm{R} \\ & \mathrm{C} \text { - centigrade, } \operatorname{deg} \mathrm{C} \end{aligned}$
Rankine to Farenheight $F=(9 / 4) R+32$	R - rankine, $\operatorname{deg} \mathrm{R}$ F - farenheight, deg F
Farenheight to Rankine $\mathrm{R}=(4 / 9) \mathrm{F}-32$	F - farenheight, deg F R - rankine, deg R
Centigrade to Kelvin $\mathrm{K}=\mathrm{C}+273$	$\begin{aligned} & \text { K - Kelvin, deg K } \\ & \text { C - centigrade, deg C } \end{aligned}$
Farenheight to Kelvin $\mathrm{K}=1.8 \mathrm{~F}$	$\begin{aligned} & \text { K - Kelvin, } \operatorname{deg} \mathrm{K} \\ & \text { F - farenheight, deg F } \end{aligned}$

TILLAGE

Plow Area of Cut $\mathrm{A}_{\mathrm{c}}=\mathrm{W}_{\mathrm{c}} \mathrm{D}_{\mathrm{c}}$	A_{c} - area of cut of plow, m^{2} W_{c} - width of cut, m D_{c} - depth of cut, m
Draft of Plow $\mathrm{F}=\mathrm{A}_{\mathrm{c}} \delta_{\mathrm{s}}$	F - draft of plow, kg A_{c} - area of cut, m^{2} δ_{s} - specific resistance of soil, $\mathrm{kg} / \mathrm{m}^{2}$
Drawbar Horsepower $\mathrm{DHP}=\frac{\mathrm{F} \mathrm{~V}}{76.2}$	DHP - drawbar horsepower F - draft of implement, kg V - velocity of implement, m / s
Theoretical Field Capacity $\mathrm{C}_{\mathrm{t}}=0.1 \quad \mathrm{~W}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}$	C_{t} - theoretical field capacity, ha/hr W_{i} - width of implement, m V_{i} - implement speed, kph
Effective Field Capacity $\mathrm{C}_{\mathrm{e}}=\mathrm{C}_{\mathrm{t}} \xi_{\mathrm{f}}$	C_{e} - effective field capacity, ha/hr C_{t} - theoretical field capacity, ha/hr ξ_{f} - field efficiency, decimal
Field Efficiency $\xi_{\mathrm{f}}=\frac{\mathrm{C}_{\mathrm{e}}}{\mathrm{C}_{\mathrm{t}}} \times 100$	$\xi_{f}-$ field efficiency, \% C_{e} - effective field capacity, ha/hr C_{t} - theoretical field capacity, ha/hr

TILLAGE

Number of Implement Unit $N_{I}=\frac{A_{f}}{T_{o} C_{e}}$	N_{I} - number of implement units A_{f} - area of the farm, hectares T_{o} - total operating time to finish operation, hours Ce - effective field capacity of implement, $\mathrm{ha} / \mathrm{hr}$
Time to Finish Tillage Operation $T_{o}=\frac{A_{f}}{C_{e} N_{I}}$	T_{o} - time required to finish tillage operation, hr A_{f} - area of the farm, hectares C_{e} - effective field capacity, ha/hr N_{I} - number of tillage implement
Width of Cut of Disc Plow $\mathrm{W}=\frac{0.95 \mathrm{~N} \mathrm{~S}+\mathrm{D}}{1000}$	W - width of cut, m N - number of disk S - disk spacing, mm D - diameter of disk, mm
Width of Cut of Disc Harrow (Single Action) $\mathrm{W}=\frac{0.95 \mathrm{~N} \mathrm{~S}+0.3 \mathrm{D}}{1000}$	W - width of cut, m N - number of disk S - disk spacing, mm D - diameter of disk, mm

TILLAGE

Width of Cut of Disc Harrow (Tandem Type) $\mathrm{W}=\frac{0.95 \mathrm{~N} \mathrm{~S}+1.2 \mathrm{D}}{1000}$	W - width of cut, m N - number of disk S - disk spacing, mm D - diameter of disk, mm
Width of Cut of Disc Harrow (Offset Type) $\mathrm{W}=\frac{0.95 \mathrm{~N} \mathrm{~S}+0.6 \mathrm{D}}{1000}$	W - width of cut, m N - number of disk S - disk spacing, mm D - diameter of disk, mm
Draft of Moldboard Plow $\begin{aligned} & \mathrm{D}=7.0+0.049 \mathrm{~S}^{2}: \text { silty clay } \\ & \mathrm{D}=6.0+0.053 \mathrm{~S}^{2}: \text { clay loam } \\ & \mathrm{D}=3.0+0.021 \mathrm{~S}^{2}: \text { loam } \\ & \mathrm{D}=3.0+0.056 \mathrm{~S}^{2}: \text { sandy silt } \\ & \mathrm{D}=2.8+0.013 \mathrm{~S}^{2}: \text { sandy loam } \\ & \mathrm{D}=2.0+0.013 \mathrm{~S}^{2}: \text { sand } \end{aligned}$	D - unit draft of implement, $\mathrm{N} / \mathrm{cm}^{2}$ S - implement speed, kph

TRACTOR

Engine Speed $\mathrm{V}_{\mathrm{e}}=-------------$	V_{e} - engine speed, $\mathrm{km} / \mathrm{hr}$ R - diameter of wheel, m N_{e} - engine speed. Rpm I - reduction ratio, $1^{\text {st }}$ gear equal to 4.48 and $4^{\text {th }}$ gear equal to 1.45
Engine Power $\mathrm{P}_{\mathrm{w}}=\eta \mathrm{P}_{\mathrm{e}}$	P_{w} - wheel power, kw P_{e} - engine power, kw η-mechanical efficiency, 0.75 to 0.95
PTO Power $P_{p t o}=\eta P_{e}$	$\mathrm{P}_{\mathrm{pto}}-$ PTO horsepower, kw P_{e} - engine power, kw η-mechanical efficiency, 0.75 to 0.95
Wheel Axle Torque $\mathrm{T}=\frac{1000 \mathrm{~N}}{2 \pi \mathrm{n}}$	T - wheel axle torque, $\mathrm{N}-\mathrm{m}$ N - wheel axle power, kw n - speed of the wheel axle, rpm

TRACTOR

Wheel Axle Power $\begin{aligned} \mathrm{P}_{\mathrm{d}} & =\mathrm{P}_{\mathrm{w}}-\mathrm{P}_{\mathrm{l}} \quad \text { or } \\ & =\mathrm{P}_{\mathrm{w}}-\left(\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{r}}\right) \end{aligned}$	$\mathrm{P}_{\mathrm{d}}-$ drawbar power or effective power, kW P_{w} - wheel axle power, kw $\mathrm{P}_{1}-$ lost power, kw P_{s} - lost power by slip of wheel, kw $\mathrm{P}_{\mathrm{r}}-$ lost power by rolling resistance, kw
Traction Efficiency $\eta_{d}=P_{d} / P_{w}$	$\begin{aligned} & \eta_{d}-\text { traction efficiency, } \% \\ & \mathrm{P}_{\mathrm{d}}-\text { drawbar power, } \mathrm{kw} \\ & \mathrm{P}_{\mathrm{w}}-\text { wheel power, } \mathrm{kw} \end{aligned}$
Running Resistance $\mathrm{R}=\mathrm{C}_{\mathrm{r}} \mathrm{~W}$	R - rolling resistance, kgf C_{r} - coefficient of rolling resistance 0.01 to 0.4 for wheel type and 0.05 to 0.12 for track type W - trator weight, kg
Drive Wheel or Track Slippage $\% \text { Slip }=100 \frac{R-r}{r}$	\% Slip - percent wheel slip, \% R - total drive wheel revolution count to traverse the drawbar runway under no load, rev r - total drive wheel revolution count to traverse the drawbar runway under load, rev

TRACTOR

Travel Reduction or Slip $\mathrm{S}=100 \frac{\mathrm{~A}_{\mathrm{n}}-\mathrm{A}_{\mathrm{l}}}{\mathrm{~A}_{1}}$	S - slip, \% A_{n} - tract revolution under no load condition, m A_{1} - tract revolution under load condition, m
Stability Factor $\mathrm{K}=\frac{\mathrm{F}_{\mathrm{w}} \mathrm{~W}_{\mathrm{b}}}{\mathrm{P} \mathrm{~h}_{\mathrm{h}}}$	K - stability factor, 1.25 min F_{w} - static front end weight, kg W_{b} - wheel base, P - maximum drawbar pull parallel to ground, kg h - height of static line of pull perpendicular to ground
Drawbar Power $\mathrm{DHP}=(\mathrm{F} \mathrm{~S}) / 3.6$	$\begin{aligned} & \text { DHP - drawbar power, } \mathrm{kW} \\ & \text { F - force measured, } \mathrm{kN} \\ & \mathrm{~S} \text { - forward speed, } \mathrm{km} / \mathrm{hr} \end{aligned}$
PTO Power $\begin{aligned} & \mathrm{PTOP}=2 \pi \mathrm{~F} \mathrm{RN} / 60 \\ & \mathrm{PTOP}=2 \pi \mathrm{TN} / 60 \end{aligned}$	PTOP - power take-off power, kW F - tangential force, kN R - radius of force rotation, m N - shaft speed, rpm T-torque, N -m
Hydraulic Power $\mathrm{HyP}=\mathrm{P}_{\mathrm{g}} \mathrm{Q} / 1000$	Hy P - hydraulic power, kW P_{g} - gage pressure, kPa Q - flow rate, lps

TRACTOR

Drawbar Horsepower	DHP - drawbar power, hp NEP - net engine power, hp $\xi_{m}-$ mechanical efficiency, 0.75 to 0.81
PTO Power $=\xi_{m} \times$ NEP	PTOP - power take-off power, hp NEP - net engine power, hp $\xi_{m}-$ mechanical efficiency, 0.87 to 0.90
PTOP $=\xi_{m} \times$ NEP	AXP - axle power, hp NEP - net engine power, hp $\xi_{m}-$ mechanical efficiency, 0.82 to 0.87
Axle Power	DHP - drawbar power, hp PTOP - power take-off power, hp $\xi_{m}-$ mechanical efficiency, 0.86 to 0.89
Drawbar Horsepower	DHP $=\xi_{m} \times$ PTOP

TRIGONOMETRY

$\mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$ $\mathrm{A}+\mathrm{B}=90^{\circ}$ $\mathrm{C}=90^{\circ}$	a - opposite b-adjacent c - hypotenuse
$\begin{aligned} & \sin \theta=\text { opp } / \text { hyp } \\ & \cos \theta=\text { adj } / \text { hyp } \\ & \tan \theta=\text { opp / hyp } \end{aligned}$	Reciprocal terms: $\sin \theta=\csc \theta$ $\cos \theta=\sec \theta$ $\tan \theta=\cot \theta$ $\sin 30=\cos \left(90^{\circ}-30^{\circ}\right)$
Given \angle is $\alpha \quad$ Given \angle is β	co - function:
$\sin \alpha=\mathrm{a} / \mathrm{c}$ $\sin \beta=\mathrm{b} / \mathrm{c}$ $\cos \alpha=\mathrm{b} / \mathrm{c}$ $\cos \beta=\mathrm{a} / \mathrm{c}$ $\tan \alpha=\mathrm{a} / \mathrm{b}$ $\tan \beta=\mathrm{b} / \mathrm{a}$	$\begin{aligned} & \sin \alpha=\cos \left(90^{\circ}-\alpha\right) \\ & \cos \alpha=\sin \left(90^{\circ}-\alpha\right) \\ & \tan \alpha=\cot \left(90^{\circ}-\alpha\right) \\ & \sec \alpha=\csc \left(90^{\circ}-\alpha\right) \end{aligned}$
Identities: Reciprocal $\begin{aligned} & \sin \theta=1 / \cos \theta ; \sin \theta \csc \theta=1 \\ & \cos \theta=1 / \sec \theta ; \cos \theta \sec \theta=1 \\ & \tan \theta=1 / \cot \theta ; \tan \theta \cot \theta=1 \end{aligned}$	$\begin{aligned} & \csc \theta=1 / \sin \theta \\ & \sec \theta=1 / \cos \theta \\ & \cot \theta=1 / \tan \theta \end{aligned}$

TRIGONOMETRY

```
Pythagorean:
\mp@subsup{\operatorname{sin}}{}{2}0+\mp@subsup{\operatorname{cos}}{}{2}0=1;}\mp@subsup{\operatorname{sin}}{}{2}0=1-\mp@subsup{\operatorname{cos}}{}{2}0
\mp@subsup{\operatorname{cos}}{}{2}0=1- 哂年0
1+ \mp@subsup{\operatorname{tan}}{}{2}0=\mp@subsup{\operatorname{sec}}{}{2}0;1=\mp@subsup{\operatorname{sec}}{}{2}0-\mp@subsup{\operatorname{tan}}{}{2}0;
\mp@subsup{\operatorname{tan}}{}{2}0=\mp@subsup{\operatorname{sec}}{}{2}0-1
1+ 然2}0=\mp@subsup{\operatorname{csc}}{}{2}0;1=\mp@subsup{\operatorname{csc}}{}{2}0-\mp@subsup{\operatorname{cot}}{}{2}0
\mp@subsup{\operatorname{cot}}{}{2}}0=\mp@subsup{\operatorname{csc}}{}{2}0-
Ratio:
tan}0=\operatorname{sin}0/\operatorname{cos}0;\operatorname{tan}0\operatorname{cos}0=\operatorname{sin}
cot 0=\operatorname{cos}0/\operatorname{sin}0;\operatorname{cot}0\operatorname{sin}0=\operatorname{cos}0
Half Angle Formulas
sin}x/2=\pm\frac{\sqrt{}{}1-\operatorname{cos}x}{2
cos x/2=\pm午1+\operatorname{cos}x
tan}x/2=\frac{1-\operatorname{cos}x}{\operatorname{sin}x}=\frac{\operatorname{sin}x}{1+\operatorname{cos}x
Double Angle Formula
sin 2x=2 sin}x\operatorname{cos}
1/2 sin 2x= sin}x\operatorname{cos}
```



```
    = 訨}\mp@subsup{}{}{2}\textrm{x}-(1-\mp@subsup{\operatorname{cos}}{}{2}\textrm{x}
    =2 cos}\mp@subsup{}{2}{x}-
    =1-2\mp@subsup{\operatorname{sin}}{}{2}x
tan}2\textrm{x}=2\operatorname{tan}\textrm{x
    1-\mp@subsup{\operatorname{tan}}{}{2}\textrm{x}
```


TRIGONOMETRY

Sum and Difference of Two Angles
 $\sin (A \pm B)=\sin A \cos B+\cos A \sin B$
 $\cos (A \pm B)=\cos A \cos B \pm \sin A \sin B$
 $\tan (A \pm B)=\tan A \pm \tan B$
 $1 \pm \tan A \tan B$

Area of Triangle
Given three sides a, b and c :
Hero's Formula:

$$
\begin{aligned}
& A=\sqrt{ } s(s-a)(s-b)(s-c) \\
& s=1 / 2(a+b+c)
\end{aligned}
$$

WATER TREATMENT

Settling Velocity $V_{s}=H / T$	V_{s} - settling velocity, m / hr H - depth of settling tank, m T-detention time, hour
Volume of Settling Tank $\mathrm{V}_{\mathrm{t}}=\mathrm{Q} / \mathrm{T}$	$\begin{aligned} & \mathrm{V}_{\mathrm{t}} \text { - volume of settling tank, } \mathrm{m}^{3} \\ & \mathrm{Q} \text { - throughput, } \mathrm{m}^{3} / \mathrm{hr} \\ & \mathrm{~T} \text { - detention time, hrs } \end{aligned}$
Filter Surface Area $\mathrm{A}=\mathrm{Q} /(\mathrm{a} v)$	```A - filter area, \(\mathrm{m}^{2}\) Q - throughput of water, \(\mathrm{m}^{3} / \mathrm{hr}\) a - operating time, hr/day v - filtration rate, \(\mathrm{m}^{3} / \mathrm{m}^{2}-\mathrm{hr}\)```
Amount of Active Chlorine per Hour $\mathrm{Q}_{\mathrm{ac}}=\mathrm{D}_{\mathrm{c}} \mathrm{Q}_{\mathrm{t}}$	Q_{ac} - amount of active chlorine per hour, g / hr D_{c} - chlorine demand, $\mathrm{g} / \mathrm{m}^{3}$ Q_{t} - amount of water to be treated, $\mathrm{m}^{3} / \mathrm{hr}$
Chlorine Demand $\mathrm{D}_{\mathrm{c}}=\mathrm{C}_{\mathrm{c}}+\mathrm{R}_{\mathrm{d}}$	$\begin{aligned} & \hline \mathrm{D}_{\mathrm{c}} \text { - chlorine demand, } \mathrm{mg} / \mathrm{l} \\ & \mathrm{C}_{\mathrm{c}} \text { - chlorine consumption, } \mathrm{mg} / \mathrm{l} \\ & \mathrm{R}_{\mathrm{d}} \text { - desired residual, } 0.1 \text { to } 0.3 \mathrm{mg} / \mathrm{l} \end{aligned}$

WEIR, FLUMES, AND ORIFICE

Rectangular Weir Without Contraction $\mathrm{Q}=0.0184 \mathrm{~L} \mathrm{H}^{3 / 2}$	Q - discharge, lps L - length of weir crest, cm H - total head, cm
Rectangular Weir With Contraction $\mathrm{Q}=3.33(\mathrm{~L}-0.2 \mathrm{H}) \mathrm{H}^{3 / 2}$	$\begin{aligned} & \text { Q - discharge, lps } \\ & \text { L - length of weir crest, } \mathrm{cm} \\ & \text { H - total head, } \mathrm{cm} \end{aligned}$
Trapezoidal Weir (4h:11) $\mathrm{Q}=0.0186 \mathrm{~L} \mathrm{H}^{3 / 2}$	Q - discharge, lps L - length of weir crest, cm H - total head, cm
Triangular Weir (90 deg) $\mathrm{Q}=0.0138 \mathrm{H}^{5 / 2}$	$\begin{aligned} & \text { Q - discharge, lps } \\ & \text { H - total head, cm } \end{aligned}$
Parshall Flume (1 to 8 ft Throat Width) $\mathrm{Q}=4 \mathrm{WH}_{\mathrm{a}}^{1.522 \mathrm{w}^{0.026}}$	Q - discharge, lps W - throat width, cm H_{a} - head on the crest, cm
Orifice $\mathrm{Q}=0.61 \times 10^{-3} \mathrm{~A}(2 \mathrm{gh})^{0.5}$	$\begin{aligned} & \mathrm{Q} \text { - discharge, lps } \\ & \text { A - area of orifice, } \mathrm{cm}^{2} \\ & \mathrm{~g} \text { - gravitational acceleration, } 9.8 \mathrm{~cm} / \mathrm{sec}^{2} \\ & \mathrm{~h} \text { - head, } \mathrm{cm} \end{aligned}$

WEIR, FLUMES, AND ORIFICE

\author{

| Submerged Orifice | Q - discharge, lps |
| :--- | :--- |
 \[

\mathrm{Q}=0.027 \mathrm{Ag}(\mathrm{~h})^{1 / 2}
\]
 \section*{A - area of orifice, cm^{2}}
 g - gravitational acceleration, $9.8 \mathrm{~cm} / \mathrm{sec}^{2}$
 h - head, cm

}

WIND ENERGY

Wind Power $P_{w}=1 / 2 \rho A_{r} V^{3}$	P_{w} - wind power, watts ρ - air density, $1.25 \mathrm{~kg} / \mathrm{m}^{3}$ A_{r} - rotor area, m^{2} V - velocity of the wind, m / s
Performance Coefficient $P_{\text {shaft }}=C_{p} 1 / 2 \rho A V^{3}$	$\mathrm{P}_{\text {shaft }}-$ power at the rotor shaft, watts C_{p} - power coefficient, 0.17 to 0.47 ρ - air density, $1.25 \mathrm{~kg} / \mathrm{m}^{3}$ A - rotor area, m^{2} V - wind velocity, m / s
Tip-Speed Ratio $\lambda=2 \pi \mathrm{RN} / \mathrm{V}$	λ - tips-speed ratio, decimal R - rotor radius, m N - rotor speed, rps V - wind velocity, m / s
Hydraulic Power $P_{h}=\rho_{w} g Q H$	P_{h} - hydraulic power, watts ρ_{w} - water density, $1000 \mathrm{~kg} / \mathrm{m}^{3}$ g - gravitational acceleration, $9.8 \mathrm{~m} / \mathrm{s}$ Q - water flow rate, $\mathrm{m}^{3} / \mathrm{s}$ H - lifting head, m
Overall System Efficiency $\begin{aligned} & \xi=\mathrm{P}_{\mathrm{h}} / \mathrm{P}_{\mathrm{w}} \quad \text { or } \\ & \xi=\mathrm{P}_{\mathrm{e}} / \mathrm{P}_{\mathrm{w}} \end{aligned}$	ξ - overall system efficiency, \% P_{h} - hydraulic power, watts P_{e} - electrical power, watts $P_{w}-$ wind power, watts

WIND ENERGY

Windpump Rotor Diameter $D_{r}=\left(8 \mathrm{P}_{\mathrm{h}} / \pi \rho_{\mathrm{w}} \xi \mathrm{~V}^{3}\right)^{1 / 2}$	$\begin{aligned} & \hline D_{r}-\text { rotor diameter, } m \\ & P_{h}-\text { hydraulic power, watts } \\ & \rho_{\mathrm{w}} \text { - density of water, } 1000 \mathrm{~kg} / \mathrm{m}^{3} \\ & \xi-\text { overall system efficiency, } 0.1 \\ & \mathrm{~V} \text { - wind velocity, } \mathrm{m} / \mathrm{s} \end{aligned}$
Windturbine Rotor Diameter $\mathrm{D}_{\mathrm{r}}=\left(8 \mathrm{P}_{\mathrm{e}} / \pi \rho \xi \mathrm{V}^{3}\right)^{1 / 2}$	$\begin{aligned} & \hline D_{r}-\text { rotor diameter, } m \\ & \mathrm{P}_{\mathrm{e}}-\text { electrical power, watts } \\ & \rho \text { - air density, } 1.25 \mathrm{~kg} / \mathrm{m}^{3} \\ & \xi \text { - overall system efficiency, } 0.2 \\ & \mathrm{~V}-\text { wind velocity, } \mathrm{m} / \mathrm{s} \\ & \hline \end{aligned}$

CONVERSION CONSTANTS

Length	1 ft	$=12$ inches
	1 yard	$=3$ feet
	1 mi	$=5280$ feet
	1 cm	$=0.3937$ inch
	1 inch	$=2.54 \mathrm{~cm}$
	1 m	$=3.28$ feet
	1 cm	$=10^{4}$ microns
	1 mi	$=1.609 \mathrm{~km}$
Area	1 acre	$=0.4047$ hectare
	1 ha	$=2.47$ acre
	$1 \mathrm{ft}^{2}$	$=144 \mathrm{in} .^{2}$
	1 acre	$=43,560 \mathrm{ft}^{2}$
	$1 \mathrm{mi}^{2}$	$=650$ acres
	$1 \mathrm{~m}^{2}$	$=10.76 \mathrm{ft}^{2}$
	$1 \mathrm{ft}^{2}$	$=929 \mathrm{~cm}^{2}$
	$1 \mathrm{in.}^{2}$	$=6.452 \mathrm{~cm}^{2}$
Volume	1 liter	$=1000 \mathrm{cc}$
		$=0.2642 \mathrm{gal}$
		$=61.025 \mathrm{in}^{3}{ }^{3}$
		$=10^{3} \mathrm{~cm}^{3}$
	$1 \mathrm{ft}^{3}$	$=144 \mathrm{in} .^{3}$
		$=7.482 \mathrm{gal}$
		$=28.317$ liter
		$=28,317 \mathrm{~cm}^{3}$
	1 acre-ft	$=43,560 \mathrm{ft}^{3}$
	1 gal	$=3.7854$ liter
		$=231 \mathrm{in}^{3}$
		$=8 \mathrm{pint}$

Density	$1 \mathrm{~m}^{3}$	$\begin{aligned} & =35.31 \mathrm{ft}^{3} \\ & =10^{3} \text { liter } \end{aligned}$
	$1 \mathrm{lb} / \mathrm{in} .^{3}$	$=1728 \mathrm{lb} / \mathrm{ft}^{3}$
	1 slug/ft ${ }^{3}$	$=32.174 \mathrm{lb} / \mathrm{ft}^{3}$
		$=0.51538 \mathrm{gm} / \mathrm{cm}$
	$1 \mathrm{lb} / \mathrm{ft}^{3}$	$=16.018 \mathrm{~kg} / \mathrm{m}^{3}$
	$1 \mathrm{gm} / \mathrm{cm}^{3}$	$=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Angular	2π	$=6.2832$ radian
	1 rad	$=57.3 \mathrm{deg}$
	1 rev	$=2 \pi$
	1 rpm	$=2 \pi \mathrm{rad} / \mathrm{min}$
	$1 \mathrm{rad} / \mathrm{sec}$	$=9.549 \mathrm{rpm}$
Time	1 min	$=60$ seconds
	1 hour	$=3600$ seconds
		$=60 \mathrm{~min}$
	1 day	$=24$ hours
Speed	1 mph	$=88 \mathrm{fpm}$
		$=0.44704 \mathrm{~m} / \mathrm{s}$
		$=1.467 \mathrm{fps}$
	1 fps	$=0.6818 \mathrm{mph}$
		$=0.3048 \mathrm{~m} / \mathrm{s}$
	1 knot	$=0.5144 \mathrm{~m} / \mathrm{s}$
		$=1.152 \mathrm{mph}$
	$1 \mathrm{~m} / \mathrm{s}$	$=3.6 \mathrm{kph}$
		$=2.24 \mathrm{mph}$
		$=3.28 \mathrm{fps}$

$$
\begin{aligned}
& \text { Force, Mass } 1 \mathrm{lb}=16 \mathrm{oz} \\
& =444,820 \text { dynes } \\
& =32.174 \text { poundals } \\
& =4.4482 \mathrm{~N} \\
& =7000 \text { grains } \\
& =453.6 \mathrm{~g} \\
& 1 \text { slug } \quad=32.174 \mathrm{lb} \\
& =14.594 \mathrm{~kg} \\
& =14.594 \mathrm{~kg} \\
& =2.205 \mathrm{lb} \\
& =9.80665 \mathrm{~N} \\
& =1 \text { kilopond } \\
& 1 \mathrm{kip} \quad=1000 \mathrm{lb} \\
& 1 \mathrm{~g} \quad=980.665 \text { dynes } \\
& 1 \text { ton } \quad=2000 \mathrm{lb} \\
& =907.18 \mathrm{~kg} \\
& 1 \mathrm{oz} \quad=28.35 \mathrm{gm} \\
& 1 \text { metric ton }=1000 \mathrm{~kg} \\
& 1 \text { Newton }=9.8 \mathrm{kgf} \\
& =0.225 \mathrm{lbf} \\
& \text { Pressure } \quad 1 \mathrm{~atm} \quad=1.033 \mathrm{bar} \\
& =33.90 \mathrm{ft} \text { of water }\left(\text { at } 4^{\circ} \mathrm{C}\right) \\
& =10.33 \mathrm{~m} \text { of water }\left(\text { at } 4^{\circ} \mathrm{C}\right. \\
& =14.7 \mathrm{psi} \\
& =101,325 \mathrm{~N} / \mathrm{m}^{2} \\
& =29.921 \mathrm{in} . \mathrm{Hg}\left(0^{\circ} \mathrm{C}\right) \\
& =33.934 \mathrm{ft} \mathrm{H}_{2} \mathrm{O}\left(60^{\circ} \mathrm{F}\right) \\
& =760 \mathrm{~mm} \mathrm{Hg}\left(\mathrm{O}^{\circ} \mathrm{C}\right) \\
& =406.79 \mathrm{in} . \mathrm{H}_{2} \mathrm{O}\left(39.2^{\circ} \mathrm{F}\right) \\
& =1.0332 \mathrm{~kg} / \mathrm{cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
1 \mathrm{bar} & =10 \mathrm{~m} \text { of water } \\
1 \mathrm{~mm} \mathrm{Hg} & =13.6 \mathrm{~kg} \\
\left(0^{\circ} \mathrm{C}\right) & \\
1 \mathrm{psi} & =27.684 \text { inches of water } \\
& =2.036 \text { inches mercury } \\
& =51.715 \mathrm{~mm} \mathrm{Hg}(0 \mathrm{C}) \\
& =0.0731 \mathrm{~kg} / \mathrm{cm}^{2} \\
1 \mathrm{psf} & =47.88 \mathrm{~N} / \mathrm{m}^{3} \\
1 \mathrm{in.} \mathrm{Hg} & =13.57 \mathrm{in} . \mathrm{H}_{2} \mathrm{O}\left(60^{\circ} \mathrm{F}\right) \\
\left(60^{\circ} \mathrm{F}\right) & \\
& =0.4898 \mathrm{psi} \\
1 \mathrm{~N} / \mathrm{m}^{2} & =0.1 \text { dyne } / \mathrm{cm}^{2} \\
1 \mathrm{in} \mathrm{H} & \\
& =0.0361 \mathrm{psi} \\
& =0.0736 \mathrm{inches} \text { mercury } \\
1 \mathrm{Btu} & =778.16 \mathrm{ft}-\mathrm{lb} \\
& =251.98 \mathrm{cal} \\
& =1.055 \mathrm{~kJ} \\
1 \mathrm{hp}-\mathrm{hr} & =2544.4 \mathrm{Btu} \\
1 \mathrm{~J} & =1 \mathrm{wt}-\mathrm{s} \\
& =1 \mathrm{~N}-\mathrm{m} \\
& =0.01 \mathrm{bar}-\mathrm{dm}{ }^{3} \\
& =550 \mathrm{ft}-\mathrm{lb} \\
1 \mathrm{hp}-\mathrm{s} & \\
1 \mathrm{hp}-\mathrm{min} & =42.4 \mathrm{Btu} \\
& =33,000 \mathrm{ft}-\mathrm{lb} \\
1 \mathrm{kw}-\mathrm{hr} & =3412.2 \mathrm{Btu} \\
& =3600 \mathrm{~kJ} \\
1 \mathrm{~kJ} & =1 \mathrm{kw}-\mathrm{s} \\
& =101.92 \mathrm{~kg}-\mathrm{m} \\
\mathrm{kcal} / \mathrm{gmole} & =1800 \mathrm{Btu} / \mathrm{pmole}
\end{aligned}
$$

$1 \mathrm{wt}-\mathrm{s}=1 \mathrm{~V}$-amp
$1 \mathrm{kw}-\mathrm{s}=737.562 \mathrm{ft}-\mathrm{lb}$
$1 \mathrm{kw}-\mathrm{min}=56.87 \mathrm{Btu}$
$1 \mathrm{~atm}-\mathrm{ft}^{3}=2.7194 \mathrm{Btu}$
$1 \mathrm{~J} \quad=10^{7} \mathrm{ergs}$
$1 \mathrm{ft}-\mathrm{lb} \quad=1.3558 \mathrm{~J}$
$1 \mathrm{kcal} \quad=4.1668 \mathrm{~kJ}$
$1 \mathrm{hp} \quad=0.746 \mathrm{kw}$
$1 \mathrm{~kW}=1.34 \mathrm{hp}$
$=1.32 \mathrm{cv}$ metric horsepower in French
$1 \mathrm{PS} \quad=0.986 \mathrm{Hp}$
$1 \mathrm{wt}-\mathrm{hr}=860 \mathrm{cal}$

Entropy, Specific Heat, Gas Constant
$1 \mathrm{cal} / \mathrm{g}-{ }^{\circ} \mathrm{K} \quad=1 \mathrm{Btu} / \mathrm{lb}-{ }^{\circ} \mathrm{R}$
$1 \mathrm{kcal} / \mathrm{kg}-{ }^{\circ} \mathrm{K} \quad=1 \mathrm{kcal} / \mathrm{kg}-{ }^{\circ} \mathrm{R}$
$1 \mathrm{Btu} / \mathrm{lb}-{ }^{\circ} \mathrm{R} \quad=4.187 \mathrm{~kJ} / \mathrm{kg}-{ }^{\circ} \mathrm{K}$
Universal Gas Constant

$$
\begin{aligned}
1 \mathrm{pmole}-{ }^{\circ} \mathrm{R} & =1545.32 \mathrm{ft}-\mathrm{lb} \\
& =0.7302 \mathrm{~atm}-\mathrm{ft}^{3} \\
& =1.9859 \mathrm{Btu} \\
& =10.731 \mathrm{psi}-\mathrm{ft}^{3}
\end{aligned}
$$

$1 \mathrm{kgmole}-{ }^{\circ} \mathrm{K}=8.3143 \mathrm{~kJ}$

$$
=0.08206 \mathrm{~atm}-\mathrm{m}^{3}
$$

$$
1 \text { gmole- }{ }^{\circ} \mathrm{K}=82.057 \mathrm{~atm}-\mathrm{cm}^{3}
$$

$$
=1.9859 \mathrm{cal}
$$

$$
=83.143 \text { bar }-\mathrm{cm}^{3}
$$

$$
=8.3143 \mathrm{~J}
$$

$$
=8.3149 \times 10^{7} \mathrm{erg}
$$

$$
=0.083143 \text { bar-liter }
$$

Standard Gravity g, (as conversion unit)

$$
\begin{array}{ll}
1 \mathrm{slug} & =32.174 \mathrm{fps}^{2}-\mathrm{lb} \\
1 \mathrm{psin} & =388.1 \mathrm{ips}^{2}-\mathrm{lb} \\
1 \mathrm{~s}^{2}-\mathrm{kg} & =9.80665 \mathrm{~N}-\mathrm{m} \\
1 \mathrm{~s}^{2}-\mathrm{gm} & =980.665 \mathrm{~cm}-\text { dynes }
\end{array}
$$

REFERENCES

AMTEC. Philippine Agricultural Engineering Standards. Volume I. Agricultural Machinery Testing and Evaluation Center. College of Engineering and Agro-Industrial Technology. University of the Philippines, Los Banos, College Laguna.

AMTEC. Philippine Agricultural Engineering Standards. Volume II. Agricultural Machinery Testing and Evaluation Center. College of Engineering and Agro-Industrial Technology. University of the Philippines, Los Banos, College Laguna.

Andreas, J. C. 1982. Energy-Efficient Electric Motors. Selection and Application. Marcel Dekker, Inc. 270 Madison Avenue, New York, New York 10016 USA. 200pp.

Aprovecho Institute. 1984. Fuel Saving Cookstove. GATE/GTZ, Postbox 5180, D-6236 Eschborn 1, Federal Republic of Germany. 128pp.

ASAE. ASAE Standards 1997. Standard Engineering Practices Data. The Society for Engineering in Agricultural, Food and Biological Systems. 2950 Niles Road, St. Joseph, MI 49085-9659 U.S.A. 978pp.

Boost, M. 1992. Refrigeration. CBS Publishers and Distributors. 485 Jain Bhawan BholaNath Nagar, Delhi. 450 pp.

Brown, R. H. 1956. Farm Electrification. Mc-Graw-Hill Book Company. New York. U.S.A. 367pp.

Butlig, F. and R. Branzuela. 1988. Handbook of Applied Engineering. Formulas: Irrigation and soil and Water Conservation. National Book Store. Metro Manila. 90pp.

Campbell, J.K. 1990. Dibble Sticks, Donkeys and Diesel. International Rice Research Institute. Los Baños, Laguna, Philippines. 329pp.

Cardenas. E. 1989. Fundamentals of Electricity. National Bookstore. Quad alpha Centrum Bldg. 125 Pioneer St. Mandaluyong City.. 141pp.

CLSU. Training Course Manual on Design, Installation, and Evaluation of Drip/Sprinkler Irrigation Systems. Training Course Manual. Central Luzon State University, Munoz, Nueva Ecija. October 1995.

Creamer, R. H. 1984. Machine Design. Third Edition. Addison-Wesley Publishing Co., Inc. Reading, Mass. USA. 654pp.

Eldridge, Frank R. Wind Machines. The MITRE Energy Resources and Environment Series. New York: Van Nostrand Reinhold Co. $2^{\text {nd }}$ edition. 1980. 215pp.

Fajardo, M. 2001. Simplified Methods on Building Construction. Second Edition. 5138 Merchandizing. 10-A Pangilinan Street, Congressional Avenue. Project 6 diliman, quezon City. 389 pp.

GATE/GTZ. 1986. Solar Energy: Status Report. GATE//GTZ. Postbox 5180. D-6236 Eschborn 1. Federal Republic of Germany. 54pp.

GATE/GTZ. Wind Energy. Postbox 5180, D-6236 Eschborn 1, Federal Republic of Germany. 1985. 54pp.

Herber, G. 1985. Simple Methods for the Treatment of Drinking Water. GATE/GTZ. Postbox 5180, D-6236 Eschborn 1, Federal Republic of Germany. 77pp.

Hunt, D. 1983. Farm Power and Machinery Management. Eight Edition. Iowa State University Press. Ames, Iowa. 352pp.

IRRI. Small Farm Equipment for Developing Countries. Proceedings of the International Conference on Small Farm Equipment for Developing Countries: Past Experiences and Future Priorities 2-6 September 1985. The International Rice Research Institute. P.O. Box 933, Manila, Philippines. 629pp.

Jacob, M. and G. Hawkins. 1957. Element of Heat Transfer. $3^{\text {rd }}$ Edition. John Wiley and Sons. New York. 317pp.

Kaupp, A. 1984. Gasification of Rice Hulls. GATE/GTZ, Postbox 5180, D-6236 Eschborn 1, Federal Republic of Germany. 303pp.

Krutz, G., Thompson, L., and P. Claar. 1984. Design of Agricultural Machines. John Wiley and Sons, Inc. New York, USA. 472pp.

Levinson, I. J. 1978. Machine Design. Reston Publishing Company, Inc. Reston, Virginia. A Prentice-Hall Company. Reston Virginia. 512pp.

Miller, R and M. R. Miller. 1984. Small Gasoline Engines. Theodore Audel and Company. Boston. 632pp.

PCARRD. The Philippine Recommends for Irrigation Water Management. Philippine Council for Agricultural and Natural Resources Research and Development. Los Banos, Laguna. 120pp.

RNAM. Agricultural Machinery Design and Data handbook. (Seeders and Planters). Regional Network for Agricultural Machinery. Economic and Social Commission for Asia and the Pacific. United Nation Bldg., Rajadamnem Avenue, Bangkok, Thailand. October 1991. 137pp.

Sasse, Ludwig. 1984. Biogas Plants: Design and Details of Simple Biogas Plants GATE/GTZPostbox 5180. D-6236 Eschborn 1. Federal Republic of Germany. 85pp.

Smith, H.P. and L.H. Wilkes. 1977. Farm Machinery and Equipment. Sixth Edition. Tata McGraw Hill Publishing Company LTD. New Delhi, India. 487pp.

Stephenson, G. E. 1984. Small Gasoline Engines. Fourth Edition. Delmar Publishers Inc. Canada. 279pp.

Schwab, G., Barnes, K., Frevert, R., and T. Edminster. Elementary. 1971. Soil and Water Engineering. Second Edition. John Wiley and Sons. New York. 316pp.

Schwab, G., Fangmeier, D., Elliot, W., and R. Frevert. 1993. Soil and Water Conservation Engineering. Fourth Edition. John Wiley and Sons, Inc. New York. 507pp.

Starkey, P. Harnessing and Impelemtns for Animal Traction. GATE/GTZ, Postbox 5180, D6236 Eschborn 1, Federal Republic of Germany. 245pp.

Tanaka, T. Farm Tractor. Handout Sheet. JICA Agricultural Machinery Management Course. Japan. 45 pp .

Velasco, R. 1997. Handbook of Construction Estimate. Loacan Publishing House. Metro Manila. 147pp.

Wimberly, J.E. 1983. Technical Handbook for the Paddy Rice Postharvest Industry in Developing Countries. The International Rice Research Institute. Los Baños, Laguna. Philippines. 188pp.

