
October 2008
REQUIREMENT-MANAGEMENT TOOL 

FOR SMALL-TO MEDIUM-SCALE 
SOFTWARE PROJECTS

By Jay P Alegata

ABSTRACT

Software requirements consist of the product and behavioral properties 
of a software system. They are essential factors in building the right 
software product/s for clients and customers. Communication is very 
important during the development of a software to ensure that the 
needs and expectations of the client are satisfied. An agreement 
between the developer and client, regarding project deliverables are 
produced. The Requirement-Management Tool (RMT) was developed 
to manage the production of various requirements artifacts like 
Statement-of-User-Requirements (SUR), Software Requirements 
Specifications (SRS), and Acceptance Criteria for sign-off. Most of the 
problems in software development includes: keeping track of user 
requirements; but with the use of this software, a checklist is generated 
by which the system analyst can determine the status of user 
requirements. The RMT software utilizes the IEEE Software 
Engineering standards for documenting software requirements to 
formalize requirements artifacts. As one of the case tools for software 
development, it can significantly increase the consistency of 
requirements documentation and tracking of software projects. The 
development of RMT follows the object-oriented analysis and design 
methodology wherein individual components are derived from the 
requirements and use cases.

1



2OO8

INTRODUCTION

Software requirements are essential factors in building 
software products for customers. In fact, it is defined by the Software 
Engineering Body of Knowledge (SWEBOK) as one area that 
software engineers could engage in as part of their professional 
practice of software development and software engineering. It covers 
both the functional and non-functional properties of the software 
system. During the course of development, developers conduct 
elicitation, analysis, specification, validation and management of these 
requirements. To ensure that both developer and client agree on the 
requirements, project deliverables are produced during this phase for 
approval. These deliverables consist of Statement-of-User 
Requirements and Acceptance Criteria (SUR), Software Requirements 
Specifications (SRS), and Acceptance Criteria for sign-off.

The current practice of software development shows that 
requirements are rarely documented by the developers because 
production of such documents is time-consuming. As a result, 
requirements problems plague the software industry. Most of these 
problems include: lack of consistency of software requirements 
artifacts resulting to poor traceability of user requirements to the 
various phases of software development, lack of control of 
requirements changes making it difficult for client to determine 
whether or not requirements are satisfied, and developers not being 
able to keep track of approved change requests due to invisibility of 
requirements process.

In this regard, requirements management tools such as TIGER 
PRO vl. 13, TRUEreQ, CMS & RTS, MKS Requirements 2006 among 
others were developed to help developers in documenting user 
requirements for the software product. Commercially available tools 
flood the software market but small-to medium-sized development 
teams do not use them due to cost and usability constraints. Large 
companies justify its benefits like being able to track project progress 
and monitoring requirements changes. However, these tools cannot 
help elicit requirements from clients and can’t replace the defined 
process of managing project requirements (Weigers, 1999). Most of 
the commercial software available for requirements can be linked with 
MS Word applications or with other requirements management tools.

2



October 2008
Based on the analysis of Weigers, requirements tools made by 

Rational Corporation such as Rational Rose can be directly connected 
with the RequisitePro in defining requirements. Since these tools are 
generic, they can support and be tailored into the development process 
of a software organization with the aid of the vendors themselves 
(Weigers, 1999).

In software projects, different types of requirements for the 
software product are specified by the customer. These can include 
business requirements, functional requirements, hardware 
requirements, nonfunctional requirements, and quality requirements. 
Nowadays, there are various requirements management tools that can 
be used to facilitate or manage the documentation (http://www.paper- 
review.com/tools/rms/read.php). Some software companies have 
customized software tools for managing requirements depending on 
the complexity of their software projects to minimize delays of 
documenting unnecessary requirements.

The requirements management tool conceptual framework 
(Figure 1) is based on the integration of the features of commercially 
available requirements management tools, the current practices of 
software development course of software engineering students and the 
IEEE Software Engineering Standards for Documentation.

Requirements Management 
Tool for Software Projects

SRS Change
Acceptance 

Criteria
Requests

Figure 1. Conceptual Framework

3

http://www.paper-review.com/tools/rms/read.php


These tools were the basis for defining major functionalities of 
the requirements management tool which focused on the major 
deliverables to make it easy to use, and any unnecessary features were 
excluded. Experiences in software development of Software 
Engineering students were made as basis for identifying the artifacts 
that were produced by the tool. In this way, navigating the 
requirements management tool was easy due to prioritized 
functionalities. The IEEE Standards for software requirements 
specification (IEEE Std. 830 1998) were integrated into the tool to 
establish compliance of requirements artifacts with the software 
engineering standards.

The requirements engineering process included elicitation, 
analysis, specification, validation and management of the user 
requirements in the development of a software product. However, the 
requirement management tool focused only on handling the major 
deliverables for the requirements including the generation of SUR, 
SRS and Acceptance criteria for sign-off. The SUR represented the list 
of user requirements to be developed for the client. The SRS focused 
on the detailed specification of the requirements but did not cater to 
modeling use case diagrams and UML representation of requirements. 
The acceptance criteria during deployment would be generated by the 
tool for client sign-off.

The requirements management tool is not a web-application 
tool but a stand-alone software application that could be used by 
software developers. It manages documentation of user requirements 
based on requirements types, use cases and generation of requirements 
artifacts. Since the bulk of requirements are unpredictable, individual 
requirements based on requirements types can be printed 
independently and integrated into the SUR. The acceptance criteria is 
subject for approval will be generated but the actual sign-off can be 
done manually. In addition to this, the requirements management tool 
defines the requirements engineering to be followed. It is the 
prerogative of the software developers to define their own process, but 
only the major documentation for requirements being catered. This 
tool is applicable to small-to medium-scale software projects where 
requirements artifacts are rarely produced.

Objectives of the study

The general objective of the study is to develop a requirements 
management tool for tracking, controlling and monitoring 
requirements artifacts of software development. Specifically, it aims 
to:

4



October 2008

1. assist the project teams in documenting requirements and 
change requests for the software product through generation of major 
requirements documents such as SUR, SRS, and Acceptance 
Criteria;

2. manage customer’s change requests for a software product and 
keep track of approved change requests through generation of reports 
of changes;

3. utilize the IEEE Software Engineering standards for 
documenting software requirements and its recommended practices; 
and

4. integrate best practices of software engineering in tracking and 
controlling artifacts of software requirements.

METHODOLOGY

Early in the development, the researcher had examined various 
literatures and fora that discussed their respective requirements 
process. Since software requirements could be elicited from senior 
software engineering students' projects, and literatures for 
requirements processes were available, the researcher utilized the 
modified waterfall model (Figure 2) for its development. Waterfall 
model was essential to the development of the project because the 
requirements were defined and changes to requirements were minimal. 
Although the client was not considered in the development, detailed 
requirements were made available to users to ensure product 
conformity.

Figure 2. Modified water fall

5



October 2008

During the development of RMT, the following five (5) major 
software development activities were performed: software 
requirements, software design, software implementation, software 
testing and software deployment. Additional activities like inspections 
and peer reviews were performed and focused mostly on the 
information flow between subsystem interfaces. Verification and 
validation activities were conducted by the researcher among 
colleagues and senior software engineering students to check its 
feasibility in their current software development project. These 
activities served as a defect prevention process of the Waterfall Model 
to minimize defects specifically in the prioritized features of the RMT. 
A summary report of each activity was documented to identify the 
major problems and inconsistencies of the software development 
activities.

Software Requirements Phase. Initially, requirements 
elicitation was performed among software engineering students with 
software projects. Informal interviews and observations of the process 
when meeting with clients in the development were conducted. As for 
requirements artifacts, the project workbooks of software engineering 
graduates were examined. Information about how software companies 
deal with requirements processes gathered from software engineering 
forum were found useful in defining the major features of RMT. To 
formalize defined requirements for RMT based on varied sources, a 
functional use case diagram was developed to describe the behavior 
and quality attributes of the software.

Software Design Phase. Based on the requirements 
specifications, high-level modules that defined the major subsystems 
were identified. Each subsystem had to ensure that certain 
requirements were categorized while encapsulating the behavior of the 
whole system. Since object-oriented design was used, all identified 
classes and objects were modeled using the Unified Modeling 
Language (UML). Additional diagrams defined by UML were 
incorporated in the design as the need arises. The development of 
graphical user interface (GUI) screenshots helped in providing visual 
representation of the system. It helped validate the requirements 
specifications with the resulting system.

Software Implementation Phase. The software implementation 
phase focused on the transformation of the design into a formal object 
oriented programming language. Since object-orientation was used,

6



October 2008
JAVA programming language was selected for implementation. In 
addition, Java syntax provides the developer the tools that can be used 
to examine functionality. The suitability of the programming language 
and other technological decisions are done in the software design 
phase. In order to provide readability of source codes, a coding 
standard was developed wherein every function component was 
indented during coding.

Software Testing Phase. The RMT is subjected to software 
testing to check its functionality. Only major test cases were done to 
ascertain that defects were found prior to the deployment of the system. 
In the development of this tool, a test strategy was developed to ensure 
that possible risks of the system are covered. The researcher conducted 
unit/module testing, integration testing, system testing, and acceptance 
testing.

Software Deployment. The software deployment phase is the 
formal turn-over of the requirement management tool to the En109 
Robotics Laboratory for trial use. In cases where improvements in 
features shall be requested, the researcher is responsible for initiating 
enhancements of the requirements management tool.

RESULTS AND DISCUSSION

The Software industry flooded the market with requirements 
management tools. However, developers are still looking for a better 
tool that produces essential requirements documentation. The 
requirements management tool focuses on the needs of clients and 
developers in the requirements phase. The tool produced SUR, SRS, 
Change Requests, and Acceptance Criteria which were subjected to 
assessment of both parties (client and developer) for utilization. These 
are the key deliverables in the requirements phase and it can be used for 
obtaining signed-off from clients. The work context of the 
requirements management tool is shown on Figure 3.

7



October 2008

Work of Tracking and 
Monitoring 

Requirements for Software 
Projects

Figure 3. Work Context Diagram

The requirements management tool catered to software 
developers, project managers, clients, and users involved in software 
development. During the course of development, high-level 
requirements are documented; clients were requested to sign-off to 
signify their approval. The developers then elicited requirements from 
clients and users for specifications. These specifications were in the 
form of use cases and scenarios to identify and understand the behavior 
of the system. As the development goes on, clients or users request for 
changes in some of the specifications.

During deployment, the client was asked to test the system for 
conformance using the acceptance criteria defined by the given 
requirements. After all requirements are satisfied, the client sign-off to 
signify acceptance of the product. The process of documenting these 
activities is managed by the requirements management tool.

Use cases are derived from the business events identified in the 
work context diagram. They are units of work that describes the overall 
behavior of the system.

8



2003

Figure 4. General Use Case Diagram

The general use case diagram shown in Fig. 4 described the 
overall behavior and functionality of the requirements tool. It managed 
user requirements supplied by users to the software developers. The 
system analyst, who is also one of the developers, managed the 
requirements specifications and kept track of completed requirements. 
These requirements were archived, together with the generated use 
cases that represented the work of the system. As a deliverable for the 
requirements tool, it generated reports intended for the client, 
customers, and project coordinator for review. The project coordinator 
monitored the completion of requirements and examined the reports 
submitted by the development team. The project coordinator, a 
representative of the SE Department, managed the execution of 
software development projects.

The major features of the Requirements Management Tool 
were defined by the menus provided in Figure 5. The essential features 
for managing user requirements and artifacts were considered.

9



October 2008

Figure 5. RMT Main GUI

The RMT Main GUI consisted of four (4) menu options, 
namely: Project, Artifacts, Reports, and About; that facilitated major 
interactions with the user. The Project Menu defined the project details 
for a software project where requirements would be tracked. The 
Artifacts Menu facilitated interaction with the user for details 
pertaining to user requirements, use cases, and requesting for change. 
It allowed the user to add, edit/view, and delete those artifacts within 
the database. The Reports Menu dealt with the list of reports that would 
be produced and major documents such as SUR, SRS, and Acceptance 
Criteria. The About Menu showed the additional information about the 
RMT system that the user needs to know.

Architectural Design

The development of the requirements management tool mainly 
focused on utilizing object-oriented development. A high-level view of 
the design is shown on Figure 6:

During decomposition, the logical packages are isolated from 
the package that defined the graphical user interfaces. This ensured 
high cohesion and low coupling of components that enhances 
performance of information flow. The user is the main driver for every 
transactions of RMT and the data is accessed through defined 
interfaces.

10



October 2008

Figure 6. RMT High-Level Design

Design and Implementation Issues

The Requirements Management Tool is developed to manage 
the production of various requirements artifacts like SUR, SRS, and 
Acceptance criteria for sign-off. It allowed the user to provide the list 
of user requirements that would be incorporated in a software project. 
The user requirements types consisted of functional, non-functional, 
technical, organizational, and documentation requirements. Each 
requirement is transformed into use cases to derive the detailed 
requirements of the system. The development of RMT followed the 
object-oriented analysis and design methodology in which individual 
components are derived from the requirements and use cases. It is 
modeled using the Unified Modeling Language (UML) that 
represented the high-level design of components, its functions, and 
information flows. Individual classes are defined per component to 
simulate the functionality.

In the software construction, JAVA is used to formalize the 
individual classes and packages. Computer Aided Software 
Engineering Tools (CASE) is used such as BlueJ for the 
development of classes and NetBeans IDE for developing the 
graphical user interfaces (GUI) of the software. The database used is 
mySQL because it is free and easy to manipulate in creating tables. 
Jasper Reports for Java is used to create the individual report of the 
requirements tools such as requirements lists, artifacts reports, and 
other requirements-related documents.

During testing, minimal defects are found because of the help 
of CASE tools for development. It automatically created a warning of

11



October 2008

defects prior to compilation and even made some notes on how defects 
could be fixed as in the case of NetBeans in which try-catch and fix 
imports could be generated automatically. Most of the defects are 
found during unit tests due to the inclusions of third-part application 
programmer's interface (API). The RMT tool is tested by some of the 
software engineering students with software projects and by 
colleagues within the SE department.

CONCLUSION AND RECOMMENDATIONS

In the light of the advancement of technology in providing 
comfort and utilization of various software applications to address the 
problem of requirements process and documentation, the 
Requirements Management Tool (RMT) software is developed. The 
Requirements Management Tool (RMT) is intended for the software 
engineering students in their software development projects. It caters 
to the documentation of user requirements as well as the production of 
major requirements artifacts like SUR, SRS and Acceptance Criteria. It 
addresses the problems of developers to make templates in 
documenting these requirements in a formalized format. As with the 
RMT, requirements artifacts are uniformly developed and follow the 
industry standard. Most of the problems in software development 
include keeping track of user requirements, but through this software, a 
checklist can be created in which the system analyst can determine the 
requirements status.

The RMT software utilizes the IEEE Software Engineering 
standards for documenting software requirements and it is 
recommended to address the need of formalizing the requirements 
artifacts. This document can assist project teams and make necessary 
change requests wherever if suggested by clients during the 
development. It can generate a list of requirements changes and 
determine whether those requirements changes are approved or not. 
The generation of reports for change request can give the developer the 
confidence that requirements changes are followed.

Requirements are essential in the development of a software 
product. Developers are now finding ways to improve the 
requirements process. The RMT software, as one of the CASE tools, 
can significantly increase the consistency of requirements 
documentation, and assist the tracking especially of the software 
project of software engineering students. However, software 

12



October 2008

developers can still improve the RMT software to address their specific 
needs in the requirements phase. Listed below are some of the 
recommendations for the RMT software:

1. complex generation of requirements list in which changes 
made in the requirements artifacts can be documented;

2. graphical representation of how requirements evolve during 
the development phase;

3. flexible documentation of requirements artifacts such as SUR, 
SRS and Acceptance Criteria;

4. software should be able to handle parallel multiple projects 
without corrupting data entities;

5. automated conversion of high-level requirements into use 
cases and use cases into detailed requirements; and,

6. since Java has limited or need-to-discover-GUI-components, 
there is still a need to make improvements on the look and-feel 
(L&F) of individual modules.

ACKNOWLEDGMENT

First of all, I want to thank my wife, Dorothy, for the love and 
support she has given me all these years. She has given me the strength 
to face the challenges of life.

I want to thank my family especially my mother who had been 
very supportive eversince. Thanks Nanay; you are the one who has 
taught me to be the way I am today. I also want to thank Auntie Elsie for 
her prayers and guidance in everything that I do.

I want to thank my friends and colleagues for giving me advice 
and also, a great thank you to all others who showed their interest in my 
interest and offered help.

Most of all, I want to thank God for all the blessings, good 
health, and the knowledge He has given me to overcome every 
difficulties that I've been through. He changed my views in life and 
gave me the strength to go on.

13



2008

REFERENCES

SEEC Forum. Division of information technology engineering and 
the environment. Retrieved August 16, 2006, from http://www.seec 
forum.unisa.edu.au/SEECTools.html.

TRUEreQ Object oriented product management. Retrieved August 16, 
2006, from http://www.truereq.com.

Change management and requirements tracing system. Retrieved 
August 16, 2006, from http://www.bandwood.com/cms_ 
exec_summary.htm.

MKS Requirements 2006. Retrieved August 8, 2006, from 
http://www.mks.com/products/rm .

International council on system engineering. Retrieved August 2, 2006, 
from http://www.paper-rcview.com/tools/rms/read.php .

Weigers, Karl E. (1999). Automating requirements management. Software 
development magazine.

Kuhn, S. (1998). The software design studio: An exploration. IEEE 
Software, March/April 1998.

14

http://www.seec
http://www.truereq.com
http://www.bandwood.com/cms_
http://www.mks.com/products/rm
http://www.paper-rcview.com/tools/rms/read.php

