TERRESTRIAL MACROPHYTES ASSESSMENT IN CAMP HIGHER GROUND, BAROTAC VIEJO, PROVINCE OF ILOILO, PHILIPPINES

Ernesto S. Elefan, MPA Stella G. Fernandez, PhD

ABSTRACT

This study was conducted to establish baseline data on the terrestrial macrophytes in Camp Higher Ground Brgy. San Nicolas, Barotac Viejo, Specifically, this study determined the macrophyte level of plant community diversity measured in terms of species richness, composition, and relative abundance, and determined the conservation status of plant species in the area as a logical step in protecting the threatened species from possible extinction. The assessment was done September 2017 – January 2018 employing descriptive survey method. Data were collected from the 1000m² sampling area composed of 10 quadrats each measuring 10 x 10 m². There were 123 plant species recorded that belong to 100 genera and 61 families. Results revealed that trees were 56.9%; shrubs, 13.8%; vines, 13.0%; herbs, 7.3%; ferns, 5.7%; and palms, 3.3%. Shannon-Weinner Diversity index for CHG was high (H'=3.867). Thirty-one, 31 (25.2%) macrophytes were categorized threatened. Among these, two critically endangered: Agboi (Mussaenda philippica Rich.) and Bugauak morado (Clerodendrum quadriloculare (Blanco) Merr.). The endangered species were Duklitan (Planchonella duclitan (Blco.) Bakh. f.), Bahai (Ormosia calavensis Azaola), and Salingogon (Cratoxylum formosum Benth & Hooker). However, 30 (24.3 %) plant species were considered endemic. During

the conduct of the study, some forest clearing, wood harvesting, and minor charcoal-making operations were discovered which posed threats to this natural habitat especially of threatened and endemic macrophytes. Proper conservation program should be implemented by the CHG management to prevent further biodiversity loss.

Keywords: macrophytes, diversity, endangered, endemic, conservation

INTRODUCTION

The global society has started to recognize the importance of conserving biodiversity for humans are dependent on the basic products supplied by these natural resources like food, medicine, shelter, clean water, and a host of services (ASEAN Center for Biodiversity, 2010). Many people are still not fully aware of the enormous benefits that biodiversity offers to mankind, and why these significant changes in biodiversity remain a global nightmare.

Scientific assessment of the remaining biological resources for conservation and promoting public awareness on their intrinsic values are two measures to achieve the goal of protecting these natural gifts for both the present and future generations. The inventory of the Philippine biodiversity is far from being complete (Fernando, 2009) and any similar endeavor was being carried out in Camp Higher Ground (CHG) which will become a vital part of the regional and global crusade to prevent its rapid decline and extinction. This study, however, focused on the vegetation cover that plays a role on the microclimate and ecological productivity of this significantly small parcel of agroforestry land.

In Western Visayas, a number of studies on the assessment of its vegetation were conducted and published, however, no similar study has been systematically done for CHG despite its built-in potential as an upland eco-tourism destination for the province. In 2010, Elefan and Guanzon made an assessment of Bulabog-Putian National Park (BPNP) in Dingle, Iloilo and has recorded 218 plant species. Initial survey was done

by Fuentes and Andraje (2008) and Gallaza (2009) recorded 313 plants species under 88 families. Meanwhile, Madulid (2000) found that forests in Northwest Panay were species rich and ecologically diverse area with high endemism and having numerous rare and threatened plant species of Dipterocarp trees. In Iloilo, studies on indigenous medicinal plants (Elefan, 2005), indigenous forest trees and shrubs (Elefan, 2004), and spermatophytes (Elefan, 2002) were conducted that contributed to the list of flora in this part of the region.

There were many inadequacies in our knowledge of the flora in many parts of the country (Fernando, 2009) and the data generated from this study would contribute significantly to the regional and global inventory which remained to be statistically low. This assessment was a logical attempt to contribute to the inventory of Philippine biodiversity and to serve as baseline for measuring future changes in the floristic composition in the area which can be relatively unique and serve as a basis of classifying it into another potential protected area. It is on this premise that the researchers had undertaken an assessment of the terrestrial macrophytes in Camp Higher Ground (CHG), Barotac Viejo, Province of Iloilo, Philippines.

Objectives of the Study

General objective: This study was conducted to assess the terrestrial macrophytes in Camp Higher Ground (CHG), Barotac Viejo, Iloilo, Philippines.

Specific objectives:

1. To assess the terrestrial macrophytes level of plant community biodiversity measured in terms of species richness, species composition, and relative abundance.

- 2. To identify and classify the different terrestrial macrophytes that thrives in the area.
- 3. To determine the conservation status of terrestrial macrophytes in the area as a logical step in protecting the threatened species from possible extinction.

Significance of the Study

An assessment of CHG biodiversity is a revelation of its natural richness that can eventually result to the discovery of new species that has never been recorded or uncovering endemic species that are otherwise threatened that should be protected and conserved which is the ultimate goal of this study. If ever CHG has unique biodiversity and physio-geographical features, then it can be recommended to be officially declared a protected area by the DENR. The stakeholders will formulate policies and guidelines to preserve and conserve the threatened, endemic species of the area.

CHG would be the area for field study especially for science/ Biology students dealing with taxonomy, pharmacology, terrestrial ecology and biodiversity.

The local people should know that every habitat, no matter how small and fragmented, is unique relative to other habitats in the world.

Scope and Limitations of the Study

Week-ends assessment of terrestrial macrophytes in the study area was carried-out in established only one 1000 m² sampling plots for at least five months from September 2017 to January 2018 although plant species in the vicinity in CHG were also recorded as supplementary data. The phenological observation on the flora was observed until January 2018. The duration of study covered both the rainy and dry months considering the differential responses of floral species to climatic variations. Bryophytes, sedges and grasses, except bamboo, however, were excluded in the data collection. Threatened Plants of the Philippines: A Preliminary Assessment. Asia Life Sciences Supplement, used in the classification of threatened endangered species by Fernando et al., (2008). Grasses and sedges were not included in the study.

METHODOLOGY

Research Design

This study used the descriptive research design. This design was applied in identifying plant species present in each quadrat. Species features were used in their taxonomic classification and enumerations of species were used in the computation of index of diversity.

Plant Community Reconnaissance

A reconnaissance of the study area, a 27-hectare forested land located in Brgy. Baclayan, Barotac Viejo in the northern part of the Province of loilo was carried-out by foot-cruising the entire area and its periphery to fairly observe the distribution of plant species.

Sampling Plots

The modified quadrat method was adopted in sampling for floristic data. A $1000~\text{m}^2$ transect was established along the vegetation gradient across the mountain contour. Ten quadrats were made, each measuring 10~x~10~meters, and 10~meters opposite each other were established along the transect.

Data Collection

Data collection was conducted by visiting the same established ten quadrats during weekends which started from September 2017 (part of the rainy season) until March 2018 (part of summer season) to particularly observe the phenology of the existing vegetation which was the effect of climatic condition on the behavior of budding plants such and flower initiation. as Inflorescence type was the major basis of determining plant relationships under Morpho-systematics. In every quadrant, the features of species were noted for taxonomic identification. Plant species were identified according to their accepted local, common, scientific and family names using valid taxonomic field guides, taxonomic publications. botanical kevs. and

Photographs of plants were also taken for documentation purposes. Some unidentified species were referred to some experts such as from the DENR-Region 6 and the Co's Digital Flora of the Philippines.

Enumeration of plant species in each quadrant were recorded and were used in the determination of the following: (1) Species composition, (2) Species richness (S), (3) Relative abundance (P_i) (4) Biodiversity level and, (5) Conservation Status.

Data Analysis

The frequency and percentage distribution were the statistical tools used to describe the biodiversity status of the study area. Shannon-Weinner Diversity Index (H') (Begon, et al., 1990), was used to measure the level of biodiversity using the formula:

S Where:
$$H = Shannon-Wiener$$
Diversity Index

 $H' = -\sum P_i \ln P_i$ S = Species richness

 $i = 1$ Pi = Proportion of total individuals in the ith species

The level of biodiversity was determined using the scalar rating below (Elefan and Guanzon, 2010):

<u>on</u>
е

Determination of the conservation status was based on the DENR Department Orders issued in 2007 and 2017 containing the national list of threatened Philippine plants and the International Union Conservation Network (IUCN) Red List (2017-2018).

RESULTS AND DISCUSSION

Floral Composition and Vegetation Analysis of Camp Higher Ground

Assessment of the study area showed that it can be classified as a mixed second-growth forest ecosystem based on the existing floral composition and the physical environment. Shannon-Weinner Diversity Index (H') calculation has shown CHG to have a high diversity index (H'=3.867) with 123 plant species listed in the sampling plots. The CHG, a secondary forest ecosystem has high endemism and some of the premium wood quality endemic species of desirable economic value in the study area were included in the top 96 priority species declared by EDC (Energy Development Corporation) as "Trees of the Future" (Malabrigo Jr. et al, 2016). These include the threatened plant species Anang (Diospyros pyyrhocarpa Mig.), criticallyendangered Baaauak morado Salina or (Clerodenderum quadriloculare (Blanco) Merr.) and the vulnerable Antipolo (Artocarpus blancoi Merr.). Native quality timber species include Bitaog or Palomaria (Diospyros (Calophyllum inophyllum L.,), Anang (Buchanania pyrrhocarpa Miq.) Balinghasai and arborescens Blume). Typical to a secondary growth forest in the Philippines best native species include Taluto (Pterocymbium tinctorium Blanco), Amamali (Leea

Batino Blume ех Spreng.), aculeata (Alstonia macrophylla, Wall ex. G. Don), Niog-niogan (Ficus pseudopalma Blco.) and, Bani (Pongamia pinna (L.) Merr.). Remnants of the original forest were pioneering species of Binunga (Macaranga tanarius (L.) Muell. Arg.), Bagauak (Clerodendrum minahasse Teiism. & Binn.), Tibig (Ficus nota (Blco). Merr.), Niog-niogan (Ficus pseudopalma Blco.), and Dalunot (Pipturus arborescens (Linn.) C.B. Rob.) Incidentally, there was a sporadic species of starapple (Chrysophyllum cainito L.) and kasoy (Anacardium occidentale L.). Along the edge of the sampling plots grew some pineapple plants (Ananas comosus L.) intentionally planted in the area. False birdof-paradise (Heliconia psittacorum Linn. f.) ,Pandan or Bariw-bariw (Pandanus copelandii Merr.), Langkauas zerumbet (Linn). Sm.) (Zinaiber (Chrysalidocarpus lutescens H. Wendell) and Mala-nipa (Nypa sp.) thrive luxuriantly being adapted under a cool and moisture-rich environment. Noted were some several fern species like Fan maiden hair fern (Adiantum tenerum Swartz), Bold Sword fern (Nephrolepis sp.), and the endangered species Forked Oak leaf fern (Drynaria quercifolia (L.) Sm.). Climbing fern species consisted of Nitong parang (Lygodium microphyllum (L.) Swartz,) and Nitong puti (Lygodium circinatum (Cav.) R.Br. wildly persist throughout the study area and the nearby thickets. Living on fallen tree stumps were Family Araceae species as climbing arum (Philodendron sp.) and creeping vine (Cocculus sp.). The most abundant Agpoi or Angel's wings were (Bauhinia integrefolia Roxb.) and Katmon baging or Takinis (Tetracera scandens (Linn.) Merr.). Climbing Piperaceae family species noted were Litlit (Piper interruptum Opiz. var. loheri (C.DC.) Quis.) and Posayna (Piper sp.) with the only Family Vitaceae grapelike and edible species Bika (Ampelocissus martini Planch). One Poaceae species

known as Usiu or Climbing bamboo (*Dinochloa scandens* (Blume) O. Kuntze has been included being a prominent woody vine in the area. Based on published reports, Taluto (*Pterocymbium tictorium Blanco*, Family Sterculiaceae was considered to be a rare species. Family Dioscoriaceae was represented by Banayan (*Dioscorea sp.*), an otherwise edible climber growing in the wild.

Distribution of Plant Species among Families and Plant Groups in CHG

Results shows that out of 123 plant species surveyed, 70 (56.6%) (Appendix A) are trees then followed by shrubs, 17 (13.8%) (Appendix B); vines, 16 (13.0%) (Appendix C); herbs, 9 (7.3%) (Appendix D); ferns, 7 (5.7%) (Appendix E), and palms, 4(3.3%) (Appendix F).

Plant Families with the Highest Number of Genera and Species in CHG.

The highest number of genera was recorded under the family Fabaceae (9) which also registered the second highest number of species (9). Family Moraceae dominated by Genus Ficus obtained the highest (11) number of species and most of which have been reported as threatened in different categories like Hauli or Labnog (Ficus septica Burm), Isis (Ficus ulmifolia Lam.), Niog-niogan (Ficus pseudopalma Blco), and Pakiling (Ficus odorata Blco.). Other species reported as threatened include Antipolo (Artocarpus blancoi (Elm.) Merr) and Anubing Artocarpus ovatus Blanco. Families Apocynaceae, Arecaceae or Palm family,

Euphorbiaceae and Rubiaceae recorded an identical four (4) genera each.

Diversity Level of Different Plant Groups in CHG

Results showed that a total 1999 individuals counted, trees recorded a significantly highest relative abundance (N=1188), species richness (S=70) and diversity index (H'=3.16) categorized as moderate, shrubs (N=253, S=17) and, vines (N=306, S=16). Shrubs (H'=2.29) and vines (H'=1.59) herbs (H'=1.69) and, ferns (H'=1.73) were categorized as of low diversity indices. Palms (N=30; H'=0.99) registered the lowest relative abundance and a very low diversity index.

Conservation Status of Threatened Plant Species

The Conservation status of threatened plant species recorded from the sampling plots in CHG was primarily based on the official listings in the DENR DAO 2007 & 2017, International Union of Conservation of Nature (IUCN) Red List (2017-2018), Co's Digital Flora of the Philippines (2018) and Dalawis (2008) revealed that 31 (25.2%) out of 123 plant species recorded were classified threatened. Two were Critically Endangered (CR) namely Agboi (Mussaenda philipica L.C. Rich.), and Morado (Clerodendrum auadriloculare Buaauak (Blanco) Merr. Meanwhile, 6 (4.8%) and, 4 (3.3%) plant species were categorized as Lower Risk/least concern and Other Threatened Species (OTS), respectively. Three (3) species were rare, namely Bitanghol (Calophyllum blancoi Pl.&Tr.), Bitonaol (Flacourtia rukam Zoll. & Mor) and Taluto (Pterocymbium

tictorium Blco.). Only one Orchidaceae species was recorded as Ground orchid (Habenaria sp.).

Plant Endemism

In CHG, out of 123 plant species recorded, 30 (24.3 %) have been classified as endemic based on scientific reports. Of 30 endemic species, trees registered the highest level of endemism (80.0 %) having 24 species followed by shrubs (10.0%), vines (6.7%), and palms (3.3 %) with 3, 2, and 1 species each, respectively. Observations of Human Activities

Throughout the entire study, it was observed that in some part of the CHG, there were minimal unfriendly forest clearing, minor charcoal-making, and wood harvesting activities. The area was inhabited by two households who served as caretaker of the area. There was no strict compliance of environmental protection and conservation in Camp Higher Ground.

CONCLUSIONS AND RECOMMENDATIONS

Camp Higher Ground has considerably high diversity index (H'=3.867) that is a home of 123 macrophytes with a relative abundance of 1, 999 dominated by trees (56.6%) some of which have high timber quality. Other species were classified as shrubs (13.8%), vines (13.0%), herbs (7.3%), ferns (5.7%), and palms (3.3%). A notable number of the recorded plant species were categorized as threatened (25.2%) of which three have been categorized as critically

endangered and therefore should be conserved. Endemism was considerably high (24.4%) and a few were found to be unique in the area.

Finding shows that since the study area is a private property and not yet classified as a protected ecosystem, some unfriendly forest clearing, minor charcoal-making, and wood harvesting activities have been observed. There was no strict compliance of environmental protection and conservation in Camp Higher Ground.

Based on these premises, the researchers recommend that:

(1) With the richness of plant species at Camp Higher Ground, the CPBC management should improve the conservation program to protect the natural habitat of a good number of threatened species and to prevent their possible extinction in the future. (2) Endangered and unique plant species should be propagated asexually and seed collection should be done as methods of ex situ conservation and re-establish them later to proliferate in their natural habitat.(3) It should also be considered as another potential area for community outreach activities to focus on ecosystem conservation and preservation.(4) Promote CHG as another potential botanical laboratory for the utilization of students, hobbyists, and professionals in the field of Botany and Ecology, and (5)) It is recommended that results of study on trees will be identified whether they are non-timber products with potential economic value, and, (6) Results of this study will be shared to the CPBC management with the coordination with the local government Brgy. Baclayan, Barotac Viejo, Iloilo to

impose strict policy on unauthorized activities like forest clearing, charcoal making and wood-harvesting or illegal cutting-down of big trees.

REFERENCES

- ASEAN Center for Biodiversity. (2010). The Asean biodiversity news magazine. The University of the Philippine at Los Banos, College, Laguna, Philippines. 9 (2): 6-10.
- Begon, Harper and Townsend (1990). Ecology: Individuals, populations and communities. Blackwell Scientific Pub.
- Department of Environment and Natural Resources, (2007). DAO-2007-1. Updated National List of Threatened Philippine Plants and Their Categories and the List of Other Wildlife Species. 17 pp.
- Department of Environment and Natural Resources, (2017). DAO-2017-11. Updated National List of Threatened Philippine Plants and Their Categories and the List of Other Wildlife Species. 30pp.
- Elefan, E. S. & Guanzon, N. (2010). Macrofloral diversity of bulabog-putian natural park, Dingle, Province of lloilo. *Silliman Journal*, 51 (1): 285-315.
- Elefan, E. S. (2005). Identification and collection of indigenous medicinal plants in Barangay Agsalanan, Dingle, Province of Iloilo, Central Philippine University, Iloilo City, Philippines.

Elefan, E. S. (2002). Survey of spermatophytes at Central Philippine University, Iloilo City. University Research Center, Central Philippine University, Jaro, Iloilo City. 552 pp.

- Fernando, E. S. (2009). Vegetation of the Philippine Islands. University of the Philippines at Los Banos, College, Laguna, Philippines. 15 pp.
- Fernando, E.S., Suh, M.H., Lee, J. & Lee, D.K. (2008).

 Forest formations of the Philippines. Seoul, South
 Korea: ASEAN-Korea Environmental Cooperation
 Unit. 232 pp.
- Fuentes, D. S. & Andraje, R.B. (2008). Flora of Bulabog Putian National Park and Vicinities: A Checklist. 14 pp.
- Gallaza, B. (2009). Profile of Bulabog-Putian Natural Park. A hand -out. 10 pp.
- International Union of Conservation Network (IUCN) Red List 2017-11. 23 pp.
- Malabrigo, P. Jr., Mabi, D. & David-Pilar, M. (2016). BINHI-Tree of the Future. Quezon City: Energy Development Corporation..337 pp.
- Madulid, D.A. (2000). Vegetation study of the forests in Northwest Panay, Philippines: A summary. Philippine National Museum, Manila. 2 pp

ACKNOWLEDGMENT

The researchers are indebted to the following persons who significantly institutions and this research report Central Philippine accomplish University thru her President Dr. Teodoro C. Robles for the upon the recommendation research fund endorsement of the URC Director Dr. Mary Penetrante and VPAA Dr. Irving Domingo L. Rio; The Panelists: Dr. Rey Dusaran, Dr. Ilda Borlongan, Prof. Hope and Dr. Mary O' Penetrante for their useful comments and suggestions; University of the Philippines at Los Banos (UPLB) Vice Chancellor for Research and Extension Dr. Rex Bacaling Demafeliz who provided the researchers some useful colored Illustrated books the Philippine flora authored by Dr. Pastor L. Malbrigo, Jr., et al and Dr. Edwino S. Fernando, et al. ;U.P.L.B. Forest taxonomy Professor Dr. Nelso M. Pampolina who helped identify some plant species thru email correspondence facilitated by Dr. Demafeliz; Dr. Nicolas Guanzon Jr. for the initial editing;

Engr. Naragdao of PAGASA, Region 6 for supplying the climatological data; and Forester Mr. Renato Andraje of DENR, Region 6 for his expertise in identifying the plant species during the actual conduct of the study.

APPENDIXES

Appendix A. Shannon-Wiener Diversity Index of Trees in Camp Higher Ground, Barotac Viejo, Province of Iloilo, Philippines.

Common /			1			
Local Name	Scientific Name	Family	Ni	Pi	In Pi	H'
Localitatio	Leucosyke capitellata	Tarriny	141	11	11111	111
Alagasi	(Poir.)Wedd	Urticaceae	47	0.0396	-3.229	-0.1279
Alagasi	Guioa koelreuteria	orneaceae	47	0.0070	-0.227	-0.12//
Alahan	(Blanco) Merr	Sapindaceae	5	0.0042	-5.47	-0.023
Aldridit	Ervatamia hexagona (Japinaaccac	- 3	0.0042	-5.47	-0.025
Alibot-bot	Merr.) Pich	Apocynaceae	5	0.0042	-5.47	-0.023
7 (11001 001	Leea aculeata Blume ex	Apocyriacoac	J	0.0042	0.47	0.020
Amamali	Spreng	Leeaceae	27	0.0227	-3.783	-0.0861
Anabiona	Trema orientalis (L.) Blume	Ulmaceae	4	0.0034	-5.693	-0.0192
Anagas /	Trema onemans (E.) Biome	A	7	0.0004	0.070	0.0172
Kamiring	Semecarpus elmeri Perk.	Nacardiaceae	38	0.032	-3.442	-0.1102
Duklitan/ An-	derrice airpos en nen i one.	racaralaceae	- 00	0.002	0.112	0.1102
an	Pouteria duclitan	Sapotaceae	12	0.0101	-4.594	-0.0464
GI I	Diospyros pyrrhocarpa	daporacodo	12	0.0101	1.07 1	0.0 10 1
Anana	Mia.	Ebenaceae	17	0.0143	-4.246	-0.0608
Anonang	Cordia dichotoma Forst. f.	Boraginaceae	5	0.0042	-5.47	-0.023
, wieriang	Artocarpus blancoi (Elm.)	boraginacoao	-	0.0012	0.17	0.020
Antipolo	Merr. Blco.	Moraceae	68	0.0573	-2.86	-0.1638
Anubing	Artocarpus ovatusBlanco	Moraceae	19	0.0376	-4.135	-0.0662
Apatot/Rubia	7 TOCAL POS OVATOSBIANCO	Moraccac	17	0.010	4.100	0.0002
sp.	Morinda citrifolia Linn.	Rubiaceae	16	0.0135	-4.307	-0.0581
υρ.	Pongomia pinnata (L.)	Robiacoao	10	0.0100	1.007	0.0001
Bani	Merr.	Fabaceae	1	0.0008	-7.079	-0.006
50	Clerodendrum minahasse			0.0000	7.107.7	0.000
Bagauak puti	Teijsm. & Binn.	Lamiaceae	11	0.0093	-4.681	-0.0434
Bagauak	Clerodendrum			0.0070		0.0 .0 .
morado	quadriloculare (Blco) Mer	Lamiaceae	7	0.0059	-5.133	-0.0303
Bahai	Ormosia calavensis Azaola	Papilionaceae	1	0.0008	-7.079	-0.006
	Buchanania arborescens					
Balighasai	Blume	Anacardiaceae	64	0.0539	-2.92	-0.1575
	Rodermachera pinnata (
Banai-banai	Blco.) Seem	Bignoniaceae	3	0.0025	-5.981	-0.0151
	Mallotus philippinensis	0				
Banato	Lamarck	Euphorbiaceae	8	0.0067	-5.000	-0.0337
Banawak	Uvaria rubra C.B. Rob.	Annonaceae	1	0.0008	-7.079	-0.006
Bangkal	Nauclea orientalis L.	Rubiaceae	2	0.0017	-6.386	-0.0108
Banlot/	Colona megacarpa					
Banhot	(Merr.) Burm	Tiliaceae	2	0.0017	-6.386	-0.0108
	Alstonia macrophylla Wall.					
Batino	ex DC.	Araliaceae	21	0.0177	-4.035	-0.0714
Batwan	Garcinia binucao Blanco	Clusiaceae	2	0.0017	-6.386	-0.0108
Bignay pugo	Antidesma sp	Euphorbiaceae	7	0.0059	-5.133	-0.0303
Binayuyo/Inya	Antidesma ghaesembilla	Euphorbiaceae	6			
m	Gaertn.			0.0051	-5.287	-0.0267
			1.5			
Binunga	Macaranga tanarius (L.)		15			

Appendix A continuation

Camman						
Common /	Cojontifia Nama	Family	N.I.	Pi	In Di	H'
Local Name	Scientific Name	Family	Ni	PI	In Pi	Н
D''	Flacourtia rukam Zoll. &	- ·	,	0.0000	7.070	0.007
Bitanghol	Mor.	Flacourtiaceae	1	0.0008	-7.079	-0.006
Bitaog/	Calophyllum inophyllum	CI di cia ca ca	_	0.0005	5 001	0.0151
Palomaria		Clusiaceae	3	0.0025	-5.981	-0.0151
Bitongol	Calophyllum blancoi	Flacourtiaceae	22	0.0185	-3.988	-0.0739
Bugauak	Evodia confusa Merr.	Rutaceae	7	0.0059	5.133	-0.0303
Dita	Alstonia scholaris	Apocynacea	3	0.0025	-5.981	0.0151
Dulit	Canarium hirsutum Willd.	Burseraceae	3	0.0025	-5.981	-0.0151
Earpod wattle	Acasia auricauliformis	Fabaceae	1	0.0008	-7.079	-0.006
Hambabalod	Neonauclea bartlingii					
/Lisak	(DC) Merr.	Clusiaceae	1	8000.0	-7.079	-0.006
Hauli /Labnog	Ficus septica Burm.	Moraceae	1	0.0093	-4.681	-0.0434
Hinlaumo	Mallotus ricinoides	Euphorbiacea	1			
	(Pers.) MuellArg.	е		0.0008	-7.079	-0.006
Kalios/Biri	Streblus asper Lour.	Moraceae	2	0.0017	-6.386	-0.0108
	Anacardium	Anacardiacea				
Kasoy	occidentale L.	е	1	0.0008	-7.079	-0.006
Kulatingan	Pterospermum obliquum	Sterculiaceae	3	0.0025	-5.981	-0.0151
	Wrigthia pubescens (
Lanite	Blco.) Merr.	Apocynaceae	1	0.0008	-7.079	-0.006
Mahogany	Swietenia macrophylla	, ,				
large leaf	King.	Meliaceae	183	0.1542	-1.87	-0.2883
Mahogany,	Swietenia mahogani					
small leaf	Jaca.	Meliaceae	266	0.2241	-1.496	-0.3352
	Sterculia oblongata R.					
Malabuho	Br.	Sterculiaceae	3	0.0025	-5.981	-0.0151
Malaikmo	Celtis philippensis	Celtidaceae	2	0.0017	-6.386	-0.0108
	Siphonodon celastrineus	Siphonodonta				
Matang-ulang	Griff.	ceae	10	0.0084	-4.777	-0.0402
Murraya	Murraya sp.	Rutaceae	1	0.0008	-7.079	-0.006
Oringon/	Cynometra luzoniensis	11010000	·	0.0000	7 107 7	0.000
tambis –like	Merr.	Fabaceae	1	0.0008	-7.079	-0.006
Pagsahingin or	Canarium asperum	Tabaccac	•	0.0000	7.077	0.000
Dulit	Benth.	Burseraceae	29	0.0244	-3.712	-0.0907
Dolli	Cratoxyllum celebicum	Dorscraceae	27	0.0244	0.7 12	0.0707
Paguringon	Blume	Burseraceae	23	0.0194	-3.944	-0.0764
Pakilina	Ficus odorata Blco.	Moraceae	3	0.0025	-5.981	-0.0151
Pandan /Bariw-	Pandanus copelandii	Moraccac	0	0.0020	3.701	0.0101
bariw	Merr.	Pandanaceae	39	0.154	1.870	-0.2882
Pingka-	Oroxylum indicum (L.)	Tariadriacede	07	0.104	1.070	0.2002
pingkahan	Vent.	Bignoniaceae	22	0.0185	-3.988	-0.0739
pingkanan	Actinodaphne	Digitioniaceae	22	0.0103	-3.700	-0.0737
Pipi	dolichophylla	Laureaceae	5	0.0042	-5.47	-0.023
Puso-puso	Neolitsea vidalii Merr.	Laureaceae	3	0.0042	-5.981	-0.025
Rothmania	Rothemania sp.	Rubiaceae	1	0.0023	-7.079	-0.006
Kommuna	·	Robiaceae	1	0.0000	-7.077	-0.000
Sagina Sagina	Aegiceras corniculatum (L.) Blco.	Myristicaceae	14	0.0118	-4.44	-0.0524
Saging- Saging	Albizia saponaria (Lour.)	Mynsiicaceae	14	0.0110	-4.44	-0.0324
Salina kuai		Eghacoao	2	0.0017	-6.386	-0.0108
Saling - kugi	Blume formacum	Fabaceae		0.0017	-0.386	-0.0108
Calinage	Cratoxylum formosum	Chusiana	20	0.0170	4.000	0.0700
Salinggogon	Benth & Hooker	Clusiaceae	20	0.0168	-4.083	-0.0688
Salona /	A south is sold if the side of the side	Arguagaiss				
Salong/	Agathis philippinensis	Araucariacea		0.000.4	F 400	0.0100
Almaciga	Warb.	е	4	0.0034	-5.693	-0.0192
61	Chrysophyllum cainito	6	١,	0.0000	7.070	0.007
Starapple	Linn.	Sapotaceae	1	0.0008	-7.079	-0.006

Appendix A continuation

Common /						
Local Name	Scientific Name	Family	Ni	Pi	In Pi	H'
	Ardisia squamulosa					
Tagpo	Presl.	Myristicaceae	25	0.0211	-3.86	-0.0813
Takinis	Ficus cumingii Miq.	Moraceae	16	0.0135	-4.307	-0.0581
	Macaranga grandiflora	Euphorbiacea				
Takip asin	(L.) Muell Arg.	е	32	0.027	-3.613	-0.0974
		Combretacea				
Talisay	Terminalia catappa L.	е	23	0.0194	-3.944	-0.0764
	Pterocymbium tictorium					
Taluto	Blanco	Sterculiaceae	3	0.0025	-5.981	-0.0151
Tibig	Ficus nota (Blco.) Merr.	Moraceae	5	0.0042	-5.47	-0.023
	Derris elliptica Roxb.					
Tubli	Benth.	Fabaceae	2	0.0017	-6.386	-0.0108
		Anacardiacea				
Tul-an-tul-an	Anacardium sp.	е	5	0.0042	-5.47	-0.023
						H=3.157
						Moderat
			1188			е
	_					

Appendix B

Shannon-Wiener Diversity Index of Vines in Camp Higher Ground, Barotac Viejo, Province of Iloilo, Philippines

Local / Common	Scientific Name					H'=
Name	3Clenillic Name	Family	Ni	pi	In Pi	1.59
Agpoi	Bauhinia					
/Angel's	integrefolia					
wings	(Roxb.)	Fabaceae	51	0.17	-1.772	0.301
Baling-uai/	Flagellaria indica					
Alas-as	L.	Flagillariaceae	17	0.057	-2.8706	0.163
	Smilax bracteata					
Banagan	Presl.	Smilacaceae	5	0.017	-4.0943	0.068
	Ampelocissus					
Bika	martini Planch	Vitaceae	1	0.003	-5.7038	0.019
	Merremia					
Burakan	peltata (L.) Merr.	Convolaceae	5	0.007	-5.0106	0.033
Butterfly	Centrosema					
pea	pubescens L.	Fabaceae	5	0.007	-5.0106	0.033
Climbing						
arum	Philodendron sp.	Araceae	2	0.007	-5.0106	0.033
Climbing	Dinochloa					
bamboo	scandens					
/Usiu	(Blume) O. K.	Poacea	8	0.027	-3.6243	0.097
Creeping						
vine	Cocculus sp.	Menispermaceae	2	0.007	-5.0106	0.033

Appendix B continuation

Local / Common						H'=
Name	Scientific Name	Family	Ni	pi	In Pi	1.59
	Tetracera					
Katmon-	scandensT(Linn.)					
baging	Merr.	Dilleniaceae	166	0.553	-0.5918	0.327
	Pueraria					
	montana (Lour.)					
Kudzu	Merr.	Fabaceae	6	0.02	-3.912	0.078
	Anamirta					
	cocculus (L.)	Manianarmaaaaa				
Lagtang	Wrigh	Menispermaceae	7	0.023	-3.7579	0.088
	Piper interruptum					
Litlit	Opiz. (C.DC.)	Piperaceae	23			
	Quis.			0.077	-2.5683	0.197
Malapipino	Momordica sp.	Cucurbiatceae	2	0.007	-5.0106	0.033
Posayna	Piper sp.	Piperaceae	1	0.003	-5.7038	0.019
Ubi-ubehan	Dioscorea sp.	Dioscoriacea	5	0.017	-4.0943	0.068
						H=
						1.592
			306			Low

Appendix C.

Shannon-Wiener Diversity Index of Shrubs in Camp Higher Ground, Barotac Viejo, Province of Iloilo. Philippines

Common /Local	Scientific					
name	Name	Family Name	Ni	pi	In Pi	H'
Aplas	Ficus irisana Elm.	Moraceae	1	0.004	-5.533	-0.0219
Baraw-baraw	Blechum sp.	Acanthaceae	5	0.02	-3.924	-0.0775
Bayan	Memecylon sp.	Melastomataceae	50	0.198	-1.621	-0.3204
Chinese						
Malunggay	Breynia sp.	Phyllantaceae	1	0.004	-5.533	-0.0219
	Lantana					
Coronitas	camara L.	Verbenaceae	1	0.004	-5.533	-0.0219
	Pipturus		2			
Dalunot	arborescens	Urticaceae				
	Linn			0.008	-4.840	0.0383
Ficus	Ficus sp.	Moraceae	2	0.008	-4.840	-0.0383
	Chromolaena					
	odorata (L.)					
Hagonoy	R.M. King	Asteraceae	16	0.063	-2.761	-0.1746
	Ficus ulmifolia					
Isis	Lam.	Moraceae	10	0.04	-3.231	-0.1277
	Mussaenda					
Kahoy-dalaga/	philipicca L.C.					
Agboi	Rich.	Rubiaceae	21	0.083	-2.489	-0.2066
Kalot-						
kalutan/dalupang	Urena lobata L.	Malvaceae	4	0.016	-4.147	-0.0656

Appendix C continuation

Common /Local	Scientific					
name	Name	Family Name	Ni	pi	In Pi	H'
	Triumfetta					
	rhomboidea					
Kulot-kulotan	Jacq.	Malvaceae	4	0.016	-4.147	-0.0656
	Melastoma					
Malatungaw	malabathricum	Melastomataceae	14	0.055	-2.894	-0.1602
	Breynia					
	rhamnoides (
Matang hipon	Retz.) Muell	Euphorbiaceae	3	0.012	-4.435	-0.0526
Memecylon puti	Tremycelonsp.	Melastomataceae	10	0.04	-3.231	-0.1277
	Ficus					
	pseudopalma	Moraceae				
Niog-niogan	Blco.		58	0.229	-1.473	-0.3377
	Microcos					
Shiral	paniculata	Tiliaceae	12	0.047	-3.048	-0.1446
						H=2.29
			253			Low

Appendix D

Shannon-Wiener Diversity Index of Herbs in Camp Higher Ground, Barotac Viejo, Province of Iloilo, Philippines.

Common /						
Local name	Scientific Name	Family	Ni	pi	In Pi	H'
	Тасса					
East Indian	leontopetaloides					
arrowroot	(L.)O. Kunt	Taccaceae	1	0.008	-4.7707	-0.04
False	Pseudoelephantop					
elephant's foot	us spicatus Rohr	Asteraceae	2	0.017	-4.0775	-0.069
Ground orchid	Habenaria sp.	Orchidaceae	15	0.127	-2.0626	-0.262
	Heliconia					
Heliconia	psittacorum Linn f.	Heliconiaceae	29	0.246	-1.4034	-0.345
	Zingiber zerumbet					
Langkawas	(Linn). Sm	Zingiberaceae	2	0.017	-4.0775	-0.069
Luya-luyahan	Curcuma sp.	Zingiberaceae	37	0.314	-1.1598	-0.364
Payong-						
payungan	Tacca palmate	Taccaceae	4	0.034	-3.3844	-0.115
Pineapple	Ananas camosus L.	Bromelliaceae	25	0.212	-1.5518	-0.329
	Wedelia trilobata					
Wedelia	(L.)A.S. Hitche	Asteraceae	3	0.025	-3.6721	-0.093
						H= 1.6
						9
			118			Low

Appendix E

Shannon-Wiener Diversity Index of Ferns in Camp Higher Ground, Barotac Viejo, Province of Iloilo, Philippines.

Local /Common Name	Scientific Name	Family	Ni	pi	InPi	H"
Fan Maiden	Adiantum	ranny		Į,		
hair fern	tenerum Swartz	Adiantaceae	20	0.192	-1.6487	0.317
Nitong parang	Lygodium microphyllum (Cav.) R. Br.	Schizaeaceae	15	0.144	-1.9363	0.279
Nitong puti	Lygodium circinatum (Burm.)Sw.	Schizaeasaceae	16	0.154	-1.8718	0.288
Oak leaf fern	Drynaria quercifolia (L.) Sm.	Polypodiaceae	10	0.096	-2.3418	0.225
Pteris sp	Pteris sp.	Pteridaceae	9	0.087	-2.4472	0.212
Pakong gubat	Pityrogramma sp.	Pteridaceae	1	0.01	-4.6444	0.045
Bold-sword fern	Nephrolepis biseratta (Sw.) Schott	Polypodiaceae	33	0.317	-1.1479	0.364
			104			H'=1.73 Low

Appendix F

Shannon-Wiener Diversity Index of Palms in Camp Higher Ground, Barotac Viejo, Province of Iloilo, Philippines.

Local /						
Common						
Name	Scientific Name	Family	Ni	pi	In Pi	H'
Coconut	Cocos nucifera L.	Arecaceae	6	0.2	-1.60	0.322
Mala-NIPA	Nypa sp.	Arecaceae	1	0.033	-3.40	0.113
	Chrysalidocarpus					
Palmera	lutescecens H.					
Palm	Wendell	Arecaceae	4	0.133	-2.01	0.269
Takipan/						
Fish Tail	Caryota rumphiana					
palm	Mart	Arecaceae	19	0.633	-0.4568	0.289
						H'=0.99
						Very
			30			Low