THE EFFECT OF VARYING LEVELS OF SALT AND SUGAR MIXED WITH LITTER MATERIALS ON THE GROWTH PERFORMANCE OF COBB-VANTRESS BROILERS AND ON THE REDUCTION OF ODOR AND FLY INFESTATION

By Jaime C. Cabarles Jr.

ABSTRACT

This study was conducted to determine the effect of different levels of salt and sugar mixed with litter materials on the growth of broilers and on the reduction of odor and fly infestation. Treatments were laid out in a randomized complete block design (RCBD) replicated thrice. Determination of the presence of odor and flies was done by a panel of evaluators two weeks after the birds were introduced in the pen and two days before the study was terminated. Results showed that there was no significant difference (P>0.05) on the feed consumption, liveweight gain, dressing percentage, feed efficiency and water consumption of broilers on different levels of salt and sugar mixed with sawdust. The treatment with sawdust had the lowest (P<0.05) organic and moisture content but had the highest mineral matter in their feces. Furthermore, treatments with litter had no odor to undistinguishable odor with zero to less than 10 flies present as detected by the majority of the evaluators on both periods of evaluation. Most of the evaluators reported that pens without litter had recognizable to very distinct and annoying odor with significant number of flies present. Relatively, the use of pure sawdust gave a higher profit of P74.97 attributed to the production of potting materials out of the litter.

INTRODUCTION

Background and Rationale

Odor and fly infestation are the common problems in livestock industry today. Urban folks could not raise livestock in their yard because of the odor that is most likely to be emitted by the animal manure. This foul odor may create nuisance among nearby houses and trigger a malady, which maybe harmful to human health. Aside from these, the presence of flies may worsen the situation, for flies serve as carriers of various pathogens.

Studies had been conducted to solve the phenomenal problem that affects not only the local animal industry but also those in other countries that produce animals. As a result, many alternative technologies had been developed to reduce odors. Some technologies need a lot of investment while others require small investment but are labor intensive. One of these is the use of enzymes (Badi Farm, 2003; Natures Novel, 2002) which are now available in the market but are expensive.

Usage of sawdust or wood shavings as litter materials had been found to reduce odor in buildings (Bliss Haven, 2003; Badi Farm, 2003; Jacobson, Schmidt, Nicolae, Bicudo, 1998). These materials are readily available in any of the lumberyards in the city. Sawdust used as cover to poultry composting (carcasses of dead poults piled in a compost pit) effectively minimizes the odor and fly infestation (Carr, et al., 1998). Considered as the most popular broiler litter materials are the sawdust and pine shavings used to reduce odor emitted by birds during the production period (Brake, et al., 2001& Bliss Haven, 2003).

Sawdust have an aromatic compound that absorbs ammonia present in the fecal matter (Badi Farm,2003). The sodium and chloride present in salt at the right amount serves as bactericidal agent in the litter materials. However, the salinity brought about by salt decreases the usefulness of decomposed litter materials when used as organic fertilizer for plants. It is of general knowledge that salt increases salinity, which in high amount is harmful to growing plants.

Molasses as by-product of sugar has been also found to increase palatability of feeds; therefore, there is a possibility that broilers will eat some of their litter if it has been mixed with sugar. So far, no study had been conducted that deals with different proportions of salt and sugar in the litter material, therefore, there is a need to conduct this study.

<u>Patubas</u>

Objectives of the Study

Generally, the objective of this study was to determine the effect of salt and sugar mixed in the litter materials on the growth performance of broilers and in controlling odor and fly infestation. Specifically, it aimed to answer the following questions:

- 1. What is the influence of different levels of salt and sugar on the feed consumption, feed efficiency, water intake, liveweight gain, dressing percentage and financial returns of experimental birds?
- 2. What are the effects of the different levels of salt and sugar in litter materials on the moisture, organic matter and mineral contents?
 - 3. Will the mixture of salt and sugar in the litter materials effectively control odor emission and fly count?
 - 4. Which of the two litter materials will effectively control odor, sawdust alone or sawdust added with salt and sugar?

Significance of the Study

The results of this study may give raisers and other individuals the idea of various alternative litter materials to effectively control odor emission and lessen fly infestation. The output of the study may also be used as basis for future studies to further understand the importance of sanitation and proper care of our environment without prejudice to our livelihood. For students, the results may serve as reference for their researches and studies in their respective fields.

METHODOLOGY

Research Treatments and Design

The CPU College of Agriculture Poultry Project Grower House was utilized as site during the conduct of this study from December 24, 2003 to January 25, 2004. Three days before the experiment proper, the whole premises was disinfected with Lysol.

Each pen was divided into seven compartments with an area of 6 sq ft. Electrical devices were installed to ensure that enough light and heat were provided during the brooding period.

Litter materials were mixed correspondingly based on the prescribed treatments. A mixture of sawdust and sand was used as litter materials. Varying levels of salt mixed with brown sugar were added to the litter materials as the experimental treatments of this study.

<u>Patubas</u>

The mixture of the litter materials was comprised of 91% sawdust, 8.97% sand, and 0.30% experimental treatments (salt and molasses mixture) of total litter weight per treatment (Korea Nature Farming System, 2001). The varying levels of salt mixed with molasses were as follows: 100% salt; 75% salt with 25% sugar; 50% salt with 50% sugar; 25% salt with 75% sugar; and 100% sugar. Birds raised in pure sawdust and birds raised on slatted floor served as control.

About one-foot thick litter materials were spread on the designated compartments prior to the introduction of broiler chicks.

These treatments were arranged in a randomized complete block design (RCBD). The seven experimental treatments were replicated thrice.

Care and Management

Chicks were placed directly in the experimental pens upon their delivery. Two days later, NCD vaccine was administered to prevent the occurrence of new castle disease (NCD) in the flock. For the first two weeks, they were fed with chick booster mash after which, they were fed with broiler starter crumble until the termination of the study.

In the morning, the waterers were filled with clean water. Intermittently, water-soluble vitamins were mixed in their drinking water. Feeding was done daily; one in the morning and another at 3 o'clock in the afternoon.

Data Analysis and Presentation

All the data gathered except those on odor emission and fly count were analyzed using the analysis of variance for a randomized complete block design (RCBD). Significant differences among treatments were analyzed using the Duncan's multiple range test (DMRT). Data on odor emission and fly count were analyzed using the frequency and percentage for nominal value.

MAJOR FINDINGS

Growth Performance

Results showed that different levels of salt and sugar mixed in the litter materials have no significant (P>0.05) effect in the feed consumption (Table 1), liveweight gain (Table 2), dressing percentage (Table 3), feed efficiency (Table 4), and water consumption (Table 5) of broilers. The birds from the different treatments consumed 2.501 to

<u>Patubas</u>

October 2007

2.828 kg of feeds for the whole duration of the study, had a liveweight gain that ranges from 1.730 to 1.854 kg and had a dressing percentage of 81.83% to 89.64%. The birds required 1.481 to 1.803 kg of feeds to produce a kilogram of meat and can drink from 6.000 to 8.663 liters of water in 32 days of rearing.

Treatment		Replication					
	I	II	III	Mean			
	kgkg						
100 % Salt	2.408	2.564	2.585	2.519 ns			
75% Salt & 25% Sugar	2.294	2.591	2.618	2.501			
50% Salt & 50% Sugar	2.245	2.790	2.706	2.580			
25% Salt & 75% Sugar	2.585	2.516	2.625	2.575			
100% Sugar	3.263	2.703	2.518	2.828			
Purely Sawdust	3.060	2.688	2.650	2.799			
W/out Litter	2.789	2.820	2.820	2.810			

Table 1. Feed Consumption per Bird

cv = 5.85%

^{ns} not significant at the 5% level of probability

Table 2. Liveweight Gain per Bird

Treatment		Replication	Treatment	t	
	I	II .	· III	Mean	
· · · ·			- in kg		
100 % Salt	1.694	1.748	1.764	1.735 ^{ns}	-4
75% Salt & 25% Sugar	1.714	1.780	1.696	1.730	
50% Salt & 50% Sugar	1.550	1.848	1.890	1.763	• :
25% Salt & 75% Sugar	1.852	1.664	1.740	1.752	
100% Sugar	1.795	1.858	1.908	1.854	
Purely Sawdust	1.681	1.902	1.835	1.806	
W/out Litter	1.815	1.780	1.670	1.755	

cv = 5.60%

^{ns} not significant at the 5% level of probability

Treatment		Treatment		
	Ι	II	III	Mean
			- %	
100 % Salt	86.11	85.71	97.10	89.64 ^{ns}
75% Salt & 25% Sugar	87.62	87.32	85.51	86.82
50% Salt & 50% Sugar	85.94	88.61	83.15	85.90
25% Salt & 75% Sugar	89.47	87.88	84.93	87.43
100% Sugar	83.56	85.00	76.92	81.83
Purely Sawdust	89.32	86.08	80.26	85.22
W/out Litter	85.33	90.04	92.86	89.41

Table 3. Dressing Percentage per Bird

cv = 4.86%

^{ns} not significant at the 5% level of probability

Patubas

Table 4. Feed Efficiency per Bird

Treatment		Treatment		
	I	11	III	Mean
100 % Salt	1.554	1.709	1.543	1.602 ^{ns}
75% Salt & 25% Sugar	0.997	1.672	1.775	1.481
50% Salt & 50% Sugar	1.633	1.594	1.463	1.563
25% Salt & 75% Sugar	1.521	1.735	1.694	1.650
100% Sugar	2.140	1.590	1.679	1.803
Purely Sawdust	1.380	1.581	1.738	1.566
W/out Litter	1.743	1.790	1.735	1.756

cv = 13.84%

^{ns} not significant at the 5% level of probability

Table	5.	W	ater	Consum	ption	per	Bird
		•••		e o nou m	pulon	P • •	

Treatment		Treatment		
	I	I II		Mean .
			in li	
100 % Salt	5.955	6.525	6.562	6.347 ^{ns}
75% Salt & 25% Sugar	7.493	6.991	11.505	8.663
50% Salt & 50% Sugar	5.713	6.682	6.419	6.271
25% Salt & 75% Sugar	6.544	6.299	6.320	6.388
100% Sugar	8.845	6.7.06	6.699	7.417
Purely Sawdust	8.777	6.606	6.835	7.406
W /out Litter	6.360	5.550	6.090	6.000

cv = 17.24%

^{ns} not significant at the 5% level of probability

A significant (P>0.05) difference was observed in water and feed ratio as shown in Table 6. Data revealed that broilers under 75% salt and 25% sugar drank the most volume (3.453) of water per kilo of feed consumed while the broilers in the treatment without litter drank the lowest (2.136) among the treatments but is comparable with those in the 25% salt and 75% sugar, 50/50 sugar and salt, and 100% salt.

Table 6. W	ater and	Feed	Ratio
------------	----------	------	-------

Treatment		Treatment		
	I	II	III	Mean
100 % Salt	2.473	2.545	2.538	2.519 bc
75% Salt & 25% Sugar	3.266	2.698	4.395	3.453 ª
50% Salt & 50% Sugar	2.545	2.395	2.372	2.437 bc
25% Salt & 75% Sugar	2.532	2.504	2.408	2.481 bc
100% Sugar	2.711	2.481	2.660	2.617 ^b
Purely Sawdust	2.868	2.458	2.579	2.635 b
W/out Litter	2.280	1.968	2.160	2.136°

cv = 12.85%

^{bc} Treatment means with the same letter superscript are not significantly diefferent at the 5% level of probability

October 2007

Patubas

Moisture, Organic, and Mineral Matter Content of Litter Materials

As shown in Table 7, the excreta of broilers on slatted floor had the highest (P<0.05) moisture content of 3.325%. However, the differences on the mean moisture content of different litter were not significant. The same treatment had significantly (P<0.05) the highest organic matter content of 6.782% (Table 8) but had the lowest mineral matter content of 93.218% (Table 9). All treatments were comparable from the above-mentioned parameters.

Treatment		Treatment		
Treatment	I	II	III	Mean
			- %	*****
100 % Salt	0.858	1.180	1.373	1.137 ^b
75% Salt & 25% Sugar	0.892	1.432	0.929	1.084 ^b
50% Salt & 50% Sugar	0.965	1.231	1.544	1.247 ^b
25% Salt & 75% Sugar	1.593	1.139	0.866	1.206 ^b
100% Sugar	1.309	1.667	1.024	1.333 ^b
Purely Sawdust	1.717	1.352	1.207	1.425 ^b
W/out Litter	2.974	3.420	3.580	3.325 ^a

Table 7. Percentage Moisture of Litter Materials per Treatment

cv = 20.46%

^{bc} Treatment means with the same letter superscript are not significantly diefferent at the 5% level of probability

Treatment		Treatment		
Traincht	Ι	II	III	Mean
		9	6	
100 % Salt	3.055	3.625	5.027	3.902 ^b
75% Salt & 25% Sugar	3.850	4.306	2.926	3.694 ^b
50% Salt & 50% Sugar	2.707	4.029	4.418	3.718 ^b
25% Salt & 75% Sugar	4.680	4.267	3.401	4.116 ^b
100% Sugar	4.575	3.571	3.804	3.983 ^b
Purely Sawdust	3.697	4.176	4.248	4.040 ^b
W/out Litter	6.046	6.870	7.431	6.782 ^a

Table 8. Percentage of Organic Matter in Litter Materials

cv = 17.21%

^{bc} Treatment means with the same letter superscript are not significantly diefferent at the 5% level of probability

Treatment		Replication	L	Treatment			
Treatment	Ī	Ш	III	Mean			
	%						
100 % Salt	96.945	96.375	94.973	96.098 ^a			
75% Salt & 25% Sugar	96.150	95.694	97.074	96.306 ^ª			
50% Salt & 50% Sugar	97.293	95.971	95.582	96.282 ª			
25% Salt & 75% Sugar	95.320	.95.733	96.599	95.884 ª			
100% Sugar	95.425	96.429	96.196	96.017 ^a			
Purely Sawdust	96.303	95.824	95.752	95.960 ^a			
W/out Litter	93.954	93.130	92.569	93.218 ^b			

Table 9. Percentage of Mineral Matter in Litter Materials

cv = 0.78%

^{bc} Treatment means with the same letter superscript are not significantly diefferent at the 5% level of probability.

Odor Emission and Fly Infestation

Treatments that utilized sawdust as litter materials, emitted no odor to undistinguishable odor with zero to less that 10 flies present as detected by the majority of the evaluators from two weeks after the birds were introduced in the treatments and two days before the study terminated (Table 10 - 13). On the other hand, most of the evaluators noted a recognizable odor on broilers raised on slatted floor with more than ten but less than 50 flies present. The odor became more recognizable to very distinct and annoying on the last evaluation during which more than 50 flies present to cannot be counted.

	Odor Evaluation Category									
Treatment	No odor detected		Undistinguishable odor		Recognizable odor		Very distinct and annoying odor			
	lst	Last	lst	last	lst	last	lst	last		
	% of evaluators									
100 % Salt	38.89	33.33	.5.56	60.00	5.50	6.60	0	0		
75% Salt & 25% Sugar	38.89	40.00	61.11	46.67	0	13.33	0	0		
50% Salt & 50% Sugar	33.33	6.60	50.00	73.33	16.67	20.00	0	0		
25% Salt & 75% Sugar	27.78	40.00	55.56	53.33	16.67	6.60	0	0		
100% Sugar	27.78	40.00	61.11	53.33	11.11	6.60	0	0		
Purely Sawdust	27.78	6.60	50.00	80.00	22.22	13.33	0	0		
W/out Litter	0	0	16.67	0	72.22	66.67	11.11	33.33		

Table 10. Evaluation of Odor Two-weeks (1st evaluation) After the Start of the Study and Two-days (last evaluation) Before the Study was Terminated

Table 11. Fly Count Two-weeks (1st evaluation) After the Birds were Introduced to Treatments and Two-days (last evaluation) Before the Study Terminated

	Fly Count Categories									
Treatment	No fly present		Less than 10 flies present		More than 10 flies present but less than 50		More than 50 flies present but less than 100		Cannot be counted because of large number	
	Evaluation Sequence									
	1 st	Last	1 st	Last	154	Last	1 ** ·	Last	1 **	Last
	% of evaluators									
100 % Salt	55.56	53.33	44.44	46.67	0	0	0	0	0	0
75% Salt & 25% Sugar	72.22	73.33	27.78	26.67	0	0	0	0	0	0
50% Salt & 50% Sugar	38.89	26.67	61.11	73.33	0	0	0	0	0	0
25% Salt & 75% Sugar	44.44	80.00	55.56	20.00	0	0	0	0	0	0
100% Sugar	27.78	60.00	72.22	40.00	. 0	0	0	· 0	0	. 0
Purely Sawdust	50.00	86.67	50.00	13.33	• 0	0	0	0	0	0
W/out Litter	0	0	33.33	0	50.00	0	16.67	66.67	0	33.33

Table 12. Cross Tabulations of Percentage Evaluators who Rated Odor Emission and its Corresponding Fly Count Two Weeks after the Broilers were introduced in the Experimental Pens

Treatment							
	Odor emission scale		No fly p	resent L	ess than 10 flies present	Total	
	No odor detected		22		17	39	
100% salt	Undistinguishable odor		20)	35	55	
	Recognizable odor		. 2		4	6 .	
		Total	44		56	100	
750/ 1.0	No odor detected		28		11	39	
75% salt &	Undistinguishable odor		26		35	61	
25 % sugar	Recognizable odor		0		0	0	
		Total	54		46	100	
500/ 1/ 0	No odor detected		17		18	35	
50% salt &	Undistinguishable odor		19	i	30	49	
50 % sugar	Recognizable odor		4		12	16	
		Total	40)	60	100	
25% salt & 75 % sugar	No odor detected		18		12	30	
	Undistinguishable odor		22		31	53	
	Recognizable odor		6		11	17	
		Total	46	i	54	100	
	No odor detected		11		17	28	
100% sugar	Undistinguishable odor		17		44	61	
	Recognizable odor		0		11	11	
		Total	28		72	100	
	No odor detected		9	,	19	28	
Pure sawdust	Undistinguishable odor		28	£	22	50	
	Recognizable odor		13		9	22	
		Total	50)	50	100	
		1	Less than	More than	Cannot be	Tota	
			10 flies	10 flies	counted		
			present	present bu			
				less than 5			
					number		
W/out litter	Undistinguishable odor		0	11	6	17	
	Recognizable odor		26	35	11	72	
	Very distinct and annoyin	g	7	4	0	11	
		Total	33	50	17	100	

Table 13. Cross Tabulations of Percentage Evaluators who Rated Odor Emission and its Corresponding Fly Count Two Days before the Study Terminated

Treatment		Fly count scale					
rreatment	Odor emission scale	,	No fly present		Less than 10 flies present	Total	
	No odor detected			23	11	34	
100% salt	Undistinguishable odor			29	31	60	
	Recognizable odor			2	4	6	
		Total		54	46	100	
75% salt	No odor detected			31	9	40	
& 25 %	Undistinguishable odor			40	.9	49	
sugar	Recognizable odor			4	7	11	
		Total		75	25	100	
50% salt	No odor detected			11	22	33	
& 50 %	Undistinguishable odor			16	38	54	
sugar	Recognizable odor			0	13	13	
		Total		27	73	100	
25% salt	No odor detected			38	2	40	
& 75 %	Undistinguishable odor			38	16	54	
sugar	Recognizable odor			4	2	6	
0		Total		80	20	100	
	No odor detected			20	20	40	
100%	Undistinguishable odor			7	47	54	
sugar	Recognizable odor			0	6	6	
	U	Total		27	73	100	
	No odor detected			0	7	7	
Pure sawdust	Undistinguishable odor			16	64	80	
	Recognizable odor			4	9.	13	
		Total		20	80	100	
		I	ess	>50 but	Cannot be counted	Total	
		ť	han 10	<100 flies	because of large		
		f	lies	present	number		
		F	resent				
W/out	Recognizable odor	•	7	40	20	67	
litter	Very distinct and annoyi	ng	0	. 13	20	33	
		Total	7	53	40	100	

Financial Returns

Financial returns revealed that treatment under purely sawdust gained somewhat a higher profit of P74.97 with a slight difference of P1.86 in 75% salt and 25% sugar. Treatment without litter had the lowest profit of P41.04. The difference in peso gained between treatment with litter and without was attributed to the production of potting materials.

Treatment	Gross income					Cost of	Total				
		Potting materials	Sales	Cost of chick	Feeds	Labor	Electricity	Vet drug	Other		Profit
					P						
100 % Salt	149.63	20	169.63	28	37.79	15	10	10	15	115.79	53.84
75% Salt & 25% Sugar	168.63	20	188.63	28	37.52	15	10	10	15	115.52	73.11
50% Salt & 50% Sugar	157 54	20	177.54	28	38.70	15	10	10	15	116.70	60.84
25% Salt & 75% Sugar	149 93	20	168.83	28	38.63	15	10	10	15	116.63	52.20
100% Sugar		20	169.63	28	42.42	15	10	10	15	120.42	49.21
Purely Sawdust	174.96	20	194.96	28	41.99	15	10	10	15	119.99	74.97
W/out Litter	153.19	. 3	156.19	28	42.15	15	10	10	10	115.15	41.04

Table 14. Financial Returns per Bird

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the study, it is concluded that the use of pure sawdust as litter materials in growing broilers had no significant effect on their feed consumption, liveweight gain, feed efficiency, water consumption, and dressing percentage. Significant differences were observed in water and feed ratio, moisture content, organic matter content, and mineral matter content. The treatments significantly reduced odor and fly count.

Further study should be conducted on various alternative litter materials aside from sawdust. This is to determine further up to how many production cycle of broilers litter materials could be used without detrimental effect on birds raised on it.

REFERENCES

Badi Farm (n.d). *Farm web*. Retrieved August 1, 2003 from http://www.badifarm.com/enzimi.html

Brake, J.D., Fuller, C.R., Link, D.E., Peebles, E.D. & Latour, MA (n.d.) Kenaf for Broiler litter. *Missouri State University Research Journal*. Retrieved August 1, 2003, from http://www2.msstate.edu/~cal/kenafl3.html

Cat Box and Litter Concern Group (n.d.) *Pine and cedar sawdust. cat box and litter*. Retrieved August 1, 2003 from http://www.worldwise.com/catboxlitter.html

Carr, L., Brodie, H.L., Martin, J.H., Malcone, G.W. Palmer, D.H. & Zimmerman, N.(1998). Composting materials: Composting catastrophic event poultry mortalities. Retrieved August 2, 2003, from http.//www.agnr.umd.edu/MCE/publication.cfm

Jacobson, L., Scchmidt, D., Nicolai, R., & Bicudo., J., (1998) Extension Web byUniversity of Minnesota Extension-Biosystem and Agricultural Engineering. Retrieved August 2, 2003 from http://www.bae.umn.edu/extens/eau /beau17.html

Luv Litter Information Group (n.d.) Farm Web by Bliss Haven Farm. Retrieved August 2, 2003, from http://www. Blisshaven.com/mall/luvlitterinfo.html

Mackes, K.H. & Lynch, D.L. (2002). The use of wood shavings and sawdust as bedding and litter for small pet mammals.
Colorado State University Journal. Retrieved August 1, 2003 from http://216.109117.135/search/cache?
P=characteristic+sawdust+as+litter=ma. wood bedding.pdf

Natures Novel (2000-2002). Odorless decomposition of organic matter. Natures Novel Odor Elimination. Retrieved July 18. 2003 from http://www.naturesnovel.com/odor.htm

University of Minnesota (2001). Extension web by University of Minnesota Extension Service. Retrieved July 18, 2003 from http://www.extension.umn.edu/